Основы общей цитологии. Учебное пособие для студентов «Основы цитологии

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«СТАВРОПОЛЬСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ ФЕДЕРАЛЬНОГО АГЕНСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ»

КАФЕДРА БИОЛОГИИ С ЭКОЛОГИЕЙ

ХОДЖАЯН А. Б., МИХАЙЛЕНКО А. К., МАКАРЕНКО Э. Н.

Основы ЦИТОЛОГИИ:

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ КЛЕТКИ

Учебное пособие для студентов первого курса ФВСО

Взаимоотношение" href="/text/category/vzaimootnoshenie/" rel="bookmark">взаимоотношения между липидами и белками (например, в области расположения фермента Na -К –АТФ-азы ).

Самой универсальной моделью, отвечающей термодинамическим принципам (принципам гидрофильно-гидрофобных взаимодействий), морфо-биохимическим и экспериментально-цитологическим данным, является жидкостно-мозаичная модель. Однако все три модели мембран не исключают друг друга и могут встречаться в разных участках одной и той же мембраны в зависимости от функциональных особенностей данного участка.

СВОЙСТВА МЕМБРАНЫ

1. Способность к самосборке. После разрушающих воздействий мембрана способна восстановить свою структуру, т. к. молекулы липидов на основе своих физико-химических свойств собираются в биполярный слой, в который затем встраиваются молекулы белков.

2. Текучесть. Мембрана не является жесткой структурой, большая часть входящих в её состав белков и липидов может перемещаться в плоскости мембраны, они постоянно флюктуируют за счет вращательных и колебательных движений. Это определяет большую скорость протекания химических реакций на мембране.

3. Полупроницаемость . Мембраны живых клеток пропускают, помимо воды, лишь определённые молекулы и ионы растворённых веществ. Это обеспечивает поддержание ионного и молекулярного состава клетки.

4. Мембрана не имеет свободных концов . Она всегда замыкается в пузырьки.

5. Асимметричность . Состав наружного и внутреннего слоев как белков, так и липидов различен.

6. Полярность . Внешняя сторона мембраны несёт положительный заряд, а внутренняя – отрицательный.

ФУНКЦИИ МЕМБРАНЫ

1) Барьерная – плазмалемма отграничивает цитоплазму и ядро от внешней среды. Кроме того, мембрана делит внутреннее содержимое клетки на отсеки (компартменты), в которых зачастую протекают противоположные биохимические реакции.

2) Рецепторная (сигнальная) – благодаря важному свойству белковых молекул – денатурации, мембрана способна улавливать различные изменения в окружающей среде. Так, при воздействии на мембрану клетки различных средовых факторов (физических, химических, биологических) белки, входящие в ее состав, меняют свою пространственную конфигурацию, что служит своеобразным сигналом для клетки. Это обеспечивает связь с внешней средой, распознавание клеток и их ориентацию при формировании тканей и т. д. С этой функцией связана деятельность различных регуляторных систем и формирование иммунного ответа.

3) Обменная – в состав мембраны входят не только структурные белки, которые образуют ее, но и ферментативные, являющиеся биологическими катализаторами. Они располагаются на мембране в виде «каталитического конвейера» и определяют интенсивность и направленность реакций метаболизма.

4) Транспортная – молекулы веществ, диаметр которых не превышает 50 нм, могут проникать путем пассивного и активного транспорта через поры в структуре мембраны. Крупные вещества попадают в клетку путем эндоцитоза (транспорт в мембранной упаковке), требующего затраты энергии. Его разновидностями являются фаго - и пиноцитоз .

Пассивный транспорт – вид транспорта, в котором перенос веществ осуществляется по градиенту химической или электрохимической концентрации без затраты энергии АТФ. Выделяют два вида пассивного транспорта: простая и облегченная диффузия . Диффузия – это перенос ионов или молекул из зоны более высокой их концентрации в зону более низкой концентрации, т. е. по градиенту.

Простая диффузия – ионы солей и вода проникают через трансмембранные белки или жирорастворимые вещества по градиенту концентрации.

Облегченная диффузия – специфические белки-переносчики связывают вещество и переносят его через мембрану по принципу «пинг-понга». Таким способом через мембрану проходят сахара и аминокислоты. Скорость такого транспорта значительно выше, чем простой диффузии. Кроме белков - переносчиков, в облегченной диффузии принимают участие некоторые антибиотики – например, грамитидин и ваномицин. Поскольку они обеспечивают транспорт ионов, их называют ионофорами .

Активный транспорт – это вид транспорта, при котором расходуется энергия АТФ, он идёт против градиента концентрации. В нем принимают участие ферменты АТФ-азы. В наружной клеточной мембране находятся АТФ-азы, которые осуществляют перенос ионов против градиента концентрации, это явление называется ионным насосом. Примером является натрий-калиевый насос. В норме в клетке больше ионов калия, во внешней среде – ионов натрия. Поэтому по законам простой диффузии калий стремится из клетки, а натрий – в клетку. В противовес этому натрий-калиевый насос накачивает против градиента концентрации в клетку ионы калия, а ионы натрия выносит во внешнюю среду. Это позволяет поддерживать постоянство ионного состава в клетке и её жизнеспособность. В животной клетке одна треть АТФ расходуется на работу натрий-калиевого насоса.

Разновидностью активного транспорта является транспорт в мембранной упаковке – эндоцитоз . Крупные молекулы биополимеров не могут проникать через мембрану, они поступают в клетку в мембранной упаковке. Различают фагоцитоз и пиноцитоз. Фагоцитоз – захват клеткой твердых частиц, пиноцитоз – жидких частиц. В этих процессах выделяют стадии:

1) узнавание рецепторами мембраны вещества; 2) впячивание (инвагинация) мембраны с образованием везикулы (пузырька); 3) отрыв пузырька от мембраны, слияние его с первичной лизосомой и восстановление целостности мембраны; 4) выделение непереваренного материала из клетки (экзоцитоз).

Эндоцитоз является способом питания для простейших. У млекопитающих и человека имеется ретикуло-гистио-эндотелиальная система клеток, способная к эндоцитозу – это лейкоциты, макрофаги, клетки Купфера в печени.

ОСМОТИЧЕСКИЕ СВОЙСТВА КЛЕТКИ

Осмос – односторонний процесс проникновения воды через полупроницаемую мембрану из области с меньшей концентрацией раствора в область с более высокой концентрацией. Осмос обусловливает осмотическое давление.

Диализ – односторонняя диффузия растворенных веществ.

Раствор, в котором осмотическое давление такое же, как и в клетках, называют изотоническим. При погружении клетки в изотонический раствор её объем не изменяется. Изотонический раствор называют физиологическим – это 0,9% раствор хлорида натрия, который широко применяется в медицине при сильном обезвоживании и потери плазмы крови.

Раствор, осмотическое давление которого выше, чем в клетках, называют гипертоническим . Клетки в гипертоническом растворе теряют воду и сморщиваются. Гипертонические растворы широко применяются в медицине. Марлевая повязка, смоченная в гипертоническом растворе, хорошо впитывает гной.

Раствор, где концентрация солей ниже, чем в клетке, называют гипотоническим . При погружении клетки в такой раствор вода устремляется в нее. Клетка набухает, ее тургор увеличивается, и она может разрушиться. Гемолиз – разрушение клеток крови в гипотоническом растворе.

Осмотическое давление в организме человека в целом регулируется системой органов выделения.

ПОВЕРХНОСТНЫЙ АППАРАТ КЛЕТКИ

Снаружи любой клетки формируется поверхностный аппарат , включающий цитоплазматическую мембрану, надмембранный комплекс и субмембранные структуры.

Надмембранный комплекс. Наружная клеточная мембрана животных клеток покрыта слоем олигосахаридных цепей. Это углеводное покрытие мембраны называют гликокаликсом. Он выполняет рецепторную функцию.

У растительных клеток поверх наружной клеточной мембраны располагается плотный целлюлозный слой с порами, через которые осуществляется связь между соседними клетками посредством цитоплазматических мостиков.

У клеток грибов поверх плазмалеммы – плотный слой хитина .

У бактерий – муреина .

Надмембранный комплекс животной клетки (гликокаликс ) создает необходимое для клетки микроокружение, является местом, где находятся внеклеточные ферменты, выполняет рецепторную функцию и т. д. Однако клетки растений, грибов и прокариот отличаются от животных клеток тем, что их клеточная оболочка выполняет каркасную, защитную и важнейшую функцию – осморегуляции.

Кроме того, у многих бактерий и некоторых растительных клеток снаружи клеточной стенки формируется слизистая капсула, которая надежно защищает клетку от чрезмерной потери влаги, резкого перепада температур и других неблагоприятных факторов окружающей среды. Сравнительная характеристика поверхностных аппаратов (ПАК) прокариотических и различных эукариотических клеток приведена в таблице 2.

Таблица 2

ПОВЕРХНОСТНЫЙ АППАРАТ КЛЕТКИ

ЦИТОПЛАЗМА

Цитоплазма (греч. citos – клетка, plazma – вылепленная) – это внутренняя среда клетки. Включает гиалоплазму, цитоскелет, органоиды и включения.

Гиалоплазма (матрикс) заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Это тонкозернистое, полупрозрачное, вязкое, студенистое вещество цитоплазмы.

Химический состав. Гиалоплазма – это коллоидный раствор с высоким содержанием воды и белков. Гиалоплазма способна переходить из золеобразного (жидкого) состояния в гелеобразное. Состав гиалоплазмы определяет осмотические свойства клетки.

Н2О 70 – 75%,

белки 10 – 20%,

липиды 1 – 5%,

углеводы 0,2 – 2%,

нуклеиновые кислоты 1 – 2%,

минеральные соединения 1 – 1,5%,

АТФ и другие низкомолекулярные органические вещества 0,1 – 0,5%.

Функции : 1) транспортная : обеспечивает перемещение веществ в клетке;

2) обменная : является средой для протекания химических реакций внутри клетки;

3) собственно внутренняя среда клетки , в которую погружены все другие компоненты цитоплазмы и ядро.

Органоиды – это постоянные структуры цитоплазмы, выполняющие в клетке определенные функции. Исходя из мембранного принципа строения и функциональной принадлежности, все органоиды клетки делятся на две большие группы: органоиды общего и специального назначения.

Органоиды специального значения присутствуют у простейших (органоиды движения – ложноножки, реснички, жгутики) , органоид осморегуляции сократительная вакуоль, органоиды защиты и нападения – трихоцисты, светочувствительный глазок – стигма) и в специализированных клетках многоклеточных организмов (реснички , жгутики , микроворсинки ).

Органоиды общего значения встречаются абсолютно во всех эукариотических клетках и подразделяются на немембранные и мембранные.

К немембранным органоидам клетки общего значения относятся рибосомы, клеточный центр (центросома), микротрубочки, микрофиламенты и промежуточные филаменты (микрофибриллы).

Мембранные органоиды могут быть одно - и двумембранные.

Одномембранный принцип строения имеют эндоплазматическая сеть (ЭПС), комплекс Гольджи, лизосомы, пероксисомы и растительные вакуоли. Одномембранные органоиды клетки объединяются в вакуолярную систему , компоненты которой представляют собой отдельные или связанные друг с другом отсеки, распределенные закономерным образом в гиалоплазме. Так, различные вакуоли (вакуоли растительных клеток, пероксисомы, сферосомы и др.) возникают из пузырьков эндоплазматического ретикулума, в то время как лизосомы из пузырьков вакуолярного комплекса аппарата Гольджи.

Двумембранными органоидами клетки являются митохондрии и пластиды (лейкопласты, хлоропласты и хромопласты).

Таким образом, все мембранные элементы цитоплазмы представляют собой замкнутые, закрытые объемные зоны, отличные по составу, свойствам и функциям от гиалоплазмы. Для их описания часто употребляют термин «компартмент» – купе.

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (РЕТИКУЛУМ)



Органоид общего значения, имеющий одномембранный принцип строения. В 1945 году К. Портер с сотрудниками увидел в электронном микроскопе большое число мелких вакуолей и каналов, соединяющихся друг с другом и образующих что-то наподобие рыхлой сети (ретикулум). Было видно, что стенки этих вакуолей и канальцев ограничены тонкими мембранами.

Структура: ЭПС представляет собой сеть из пузырьков , каналов , цистерн , густо оплетающих центральную часть цитоплазмы (эндоплазму) и занимающих 50-70 % ее объема.

Различают два вида ЭПС: гранулярную (зернистую, шероховатую) и агранулярную (гладкую). На мембранах гранулярной сети расположены рибосомы, на гладкой их нет.

Основными функциями ЭПС являются: синтетическая – на гранулярной – синтез белка в рибосомах, на гладкой – углеводов и липидов; транспортная – синтезированные вещества перемещаются по каналам ЭПС внутри клетки и за её пределы.

Типы ЭПС

Шероховатая

(гранулярная) ЭПС

Гладкая

(агранулярная) ЭПС

В структуре преобладают цистерны , несущие на мембране гранулы.

Преобладают каналы и пузырьки, просвет которых отграничен от цитоплазмы одной мембраной, на которой гранулы отсутствуют.

Гранулы – рибосомы

Рибосомы отсутствуют, в мембрану встроены ферменты по принципу каталитического конвейера.

Функции: 1) синтез белков . В отличие от свободных рибосом цитоплазмы, которые синтезируют белки для «домашнего» пользования, на гранулярной ЭПС происходит синтез «экспортируемых» белков клетки и их сегрегация;

2) синтез ферментов для внутриклеточного пищеварения;

3) синтез структурных белков клеточных мембран;

4) транспортная;

5) компартментализация

Функции: 1) синтез липидов (главным образом, предшественников стероидов);

2) синтез углеводов (олигосахаридов);

3) образование пероксисом, вакуолей растительных клеток ;

4) детоксикация вредных веществ (например, барбитураты, аспирин и др. в гладкой ЭПС клеток печени);

♦ лейкопласты – эти пластиды широко представлены в клетках подземных органов растений (корни, клубни, луковицы и др.), так как они выполняют запасающую функцию .

♦ хромопласты обнаруживаются в клетках лепестков цветов, созревших плодов. Создавая яркую окраску, они способствуют привлечению насекомых для опыления цветков, животных и птиц для распространения плодов и семян в природе.

ОРГАНОИДЫ СПЕЦИАЛЬНОГО ЗНАЧЕНИЯ

Реснички и жгутики выполняют двигательные функции. В световой микроскоп эти структуры видны как тонкие выросты клетки с постоянным диаметром 200нм (0,2 мкм). Реснички обычно короче и многочисленнее, чем жгутики, но и те, и другие имеют одинаковую структуру основания, построенную из костяка микротрубочек. Снаружи этот вырост покрыт цитоплазматической мембраной . Внутри выроста расположена аксонема . В основании ресничек и жгутиков в цитоплазме видны хорошо красящиеся мелкие гранулы – базальные тельца.

Базальное тельце по своей структуре весьма сходно с центриолью клеточного центра. Оно также состоит из 9 триплетов микротрубочек – (9х3)+0 . На базальном тельце тоже можно видеть конусовидные сателлиты с головками и другие дополнительные структуры. Часто в основании реснички лежит пара базальных телец, расположенных под углом друг к другу, подобно диплосоме.


Аксонема – сложная структура, состоящая в основном из микротрубочек. В своем составе, в отличие от базального тельца, содержит 9 дуплетов

микротрубочек по периферии и 2 микротрубочки в центре – (9х2)+2 . Содержит белок динеин , считается, что именно он обеспечивает перемещение, скольжение микротрубочек относительно друг друга, так как основной белок ресничек – тубулин – не способен к сокращению, укорочению.

Микроворсинки всасывающих клеток кишечного эпителия представляют собой фибриллярную систему, характеризующуюся структурным постоянством. Центральное место в ней занимает пучок микрофиламентов актиновой природы, идущий параллельно длинной оси микроворсинки. Отдельные микрофибриллы этого пучка создают правильную систему контактов с субмембранной областью гиалоплазмы и на вершине ворсинки, и на ее боковых поверхностях при помощи коротких поперечных филаментов, расположенных через определенные промежутки. В этих участках обнаружен ά-актинин.

Включения – это непостоянные компоненты цитоплазмы. Они представлены гранулами, вакуолями, содержащими вещества, синтезированные клеткой в процессе ее жизнедеятельности. Различают 3 вида включений.

Трофические – являются запасом питательных веществ в клетке (капельки жира, гликогена, белка и т. д. ).

Пигментные – придают клеткам характерную окраску (меланин в клетках кожи) и участвуют в определенных процессах жизнедеятельности.

Секреторные – синтезируются с целью выведения из клетки и использования этих продуктов другими клетками (ферменты, гормоны в секреторных клетках).

Цитоскелет представлен микротрубочками, микрофиламентами и микрофибриллами (промежуточными филаментами).




Микротрубочки создают направление упорядоченного перемещения веществ в клетке. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Микротрубочки разрушаются под воздействием колхицина.

СТРУКТУРА ЦИТОСКЕЛЕТА

Характерис-тика

микротрубочки

микрофибриллы

микро-филаменты

Диаметр (нм)

Химический состав

виментин и др.

актин, реже немышечный миозин

Белковая природа

глобулярный белок

фибриллярные

глобулярный белок (актин)

Физико-химические свойства

лабильные белки

стабильные белки

лабильный белок (актин)

1) опорно-каркасная ;

2) формообразующая ;

3) создают направле-ние упорядоченного перемещения веществ в клетке

опорно-каркасная

(укрепляют клетку, придают ей жесткость и упругость)

двигательная

сокращаясь, обеспечивают перемещение веществ в клетке

· Микрофибриллы или промежуточные филаменты – это пучки нитей, локализованные по периферии клетки и вокруг ядра. Их называют скелетными фибриллами. Они тоньше микротрубочек, но толще микрофиламентов, за что и получили своё название. Максимальное их скопление выявляется в местах наибольшего растяжения и сжатия клетки. По химической природе промежуточные филаменты представлены разнообразными классами белков, это тканеспецифичные структуры .

· Микрофиламенты – это белковые нити толщиной около 4 нм. Большинство из них образовано молекулами актинов, которых выявлено около 10 видов.

Ядро (лат. nucleus, греч. karyon) – главный компонент эукариотической клетки. При повреждении ядра клетка погибает. Форма ядра обычно круглая, шарообразная, но может быть и другой: палочковидной, серповидной, лопастной и зависит как от формы клетки, так и от функций, которые она выполняет. В клетках с высокой физиологической активностью форма ядер сложная, что увеличивает отношение поверхности ядра к его объёму. Например, сегментоядерные лейкоциты имеют многолопастные ядра. Размеры ядра, как правило, зависят от величины клетки: при увеличении объёма цитоплазмы растёт и объём ядра. Соотношение объёмов ядра и цитоплазмы называется ядерно-плазменным соотношением.

В современном представлении в структуру ядра входят:

КАРИОПЛАЗМА – внешне бесструктурный компонент ядра, который по химическому составу аналогичен гиалоплазме, но в отличие от цитоплазматического матрикса содержит очень много нуклеиновых кислот. Он создает специфическое микроокружение для ядерных структур и обеспечивает взаимосвязь с цитоплазмой.

ЯДЕРНЫЙ МАТРИКС представлен фибриллярными белками, осуществляющими структурную (скелетную) функцию в топографической организации всех ядерных компонентов, регуляторную (принимают участие в репликации, транскрипции, процессинге), транспортную (перемещают продукты транскрипции внутри ядра и за его пределы).


ПОВЕРХНОСТНЫЙ АППАРАТ ЯДРА состоит из трех основных компонентов:1 – ядерной оболочки; 2 – поровых комплексов; 3 – ядерной ламины (плотной пластинки).

Ядерная оболочка образована уплощенными цистернами и имеет соответственно наружную и внутреннюю мембрану .

Наружная мембрана ядерной оболочки переходит во внутреннюю лишь в области ядерных пор.

Между мембранами находится перинуклеарное пространство 10–50 нм.

Ядерные поры составляют 10–12% площади поверхностного аппарата ядра. Это не просто сквозные дыры в ядерной оболочке, а комплексы, в которых, кроме мембран, имеется система правильно ориентированных в пространстве периферических и центральных глобул. По границе поры в ядерной оболочке располагаются 3 ряда гранул, по 8 штук в каждом: один ряд расположен со стороны ядра, другой – со стороны цитоплазмы, третий – в центральной части поры. От этих глобул отходят фибриллярные отростки. Такие фибриллы, идущие от периферических гранул, обычно сходятся в центре. Здесь же располагается центральная глобула. Типичные поровые комплексы у большинства эукариотических клеток имеют диаметр около 120

нм.

ЯДРЫШКИ – несамостоятельные и непостоянные структуры ядра. Их количество (обычно от 1 до 10), форма могут значительно варьировать в зависимости от типа клеток. Ядрышки активно функционируют в период между делениями клетки, в начале деления (профазу) они исчезают. Образуются в телофазу на специфических участках спутничных хромосом, называемых «ядрышковыми организаторами». У человека это 13 – 15; 21 – 22 хромосомы. Ядрышки представляют собой определенные участки ДНП хроматина, связанные со структурными и функциональными белками ядерного матрикса. В них синтезируется р-РНК и происходит формирование субъединиц рибосом. Через ядерную оболочку субъединицы попадают в цитоплазму, где собираются в целостные рибосомы, осуществляющие синтез белка в клетке. Таким образом, ядрышки являются местом синтеза р-РНК и образования субъединиц рибосом.

ХРОМОСОМЫ (ХРОМАТИН) – самый главный постоянный компонент ядра эукариотической клетки. По химической природе является дезоксирибонуклеопротеидным комплексом – ДНП (ДНП = ДНК + белки). Молекулы ДНК способны к репликации и транскрипции. В неделящейся клетке ДНП ядра представлены в виде длинных тонких нитей, носящих название «хроматин» , на которых происходит транскрипция. В начале деления клетки (профаза) удвоенные в S-период интерфазы ДНП-комплексы спирализуются и представляют собой короткие палочковидные структуры – хромосомы . Хроматин – это интерфазное состояние хромосом клетки.

ПРИЛОЖЕНИЕ

1.1 ОБЩИЕ СВЕДЕНИЯ О ЯДРЕ КЛЕТКИ

ПОВЕРХНОСТНЫЙ

АППАРАТ ЯДРА

Ядерная оболочка

Наружная и внутренняя мембраны; перинуклеарное пространство

барьерная (разграниче-

ние содержимого ядра и цитоплазмы);

защитная (обеспечение сохранности наследственного материала клетки);

транспортная (доставка веществ из ядра в цитоплаз-

му и наоборот);

структурная (упоря-доченная укладка хроматина ядра и структурная органи-

зация порового комплекса).

Поровый

комплекс

Группа глобулярных белков, связанных фибриллярными белками – (8х3)+1 . В стенке поры глобулярные белки

расположены в 3 ряда по 8 глобул и 1 глобула в центре

Ядерная ламина

(пластинка)

Аморфные белки, представляющие собой плотный слой, соединенный с внутренней мембраной

Кариоплазма

Коллоидный раствор белков

внутренняя среда ядра

Ядерный матрикс

Фибриллярные белки, формирующие плотную сетку по всему объему ядра

каркасная («скелет» ядра);

регуляторная (принимает участие в репликации, транскрипции, процессинге),

транспортная (перемещение продуктов транскрипции внутри ядра и за его пределы)

Хроматин

Дезоксирибонуклео-протеидные комплексы, в которых выделяют участки

эухроматина и гетерохроматина

хранение наследственной информации;

воспроизведение ;

передача наследственной информации дочерним клеткам

Ядрышки

Формируются в областях хромосом, отграниченных вторичными перетяжками. Представляют собой фибриллярные и гранулярные компоненты.

синтез р-РНК ;

 формирование субъединиц рибосом

1.2 СТРУКТУРА ЦИТОПЛАЗМЫ РАЗЛИЧНЫХ КЛЕТОК

Компоненты

цитоплазмы

прокарио-тическая клетка

растительная клетка

клетка

грибов

животная клетка

Гиалоплазма

О Р Г А Н О И Д Ы

О Р Г А Н О И Д Ы

преимущественно гладкая ЭПС

преимущественно гранулярная ЭПС

митохонд-рии

комплекс

рибосомы

70 S

70 S – в строме митохондрий;

80 S – в гиалоплазме, на ЭПС

перокси-сомы

у высших растений

у низших грибов

лизосомы

преимуществен-но

аутофагосомы

преимущест-венно

фагосомы

преимущественно фагосомы

клеточный

у низших растений

у высших

грибов

пластиды

трубочки

филаменты

единичные

фибриллы

реснички

имеются у отдельных видов

имеются у отдельных видов

ворсинки

Включения

белки, липиды, углеводы (гликоген), поли-фосфаты, гранулы волютина

белки (глютин), липиды,

углеводы (крахмал), кристаллы

оксалатов

белки,

липиды, углеводы (гликоген)

белки, липиды, углеводы

(гликоген),

секреторные гранулы, пигменты

Цитоскелет

преобладают

микротрубочки

преобладают

микро-трубочки

микротрубочки,

микрофибриллы, микрофиламенты

1.3 ОБЩИЕ СВЕДЕНИЯ О ЦИТОПЛАЗМЕ ЖИВОТНОЙ КЛЕТКИ

* Гиалоплазма

(цитоплазма-тический матрикс)

Коллоидный раствор белков , включающий и другие органические, минеральные вещества

 собственно внутренняя

среда клетки;

 обменная;

 транспортная.

* Включения

Временные внутри-клеточные структуры , накапливающиеся в клетке и использующиеся ею в процессе метаболизма

 трофические (запас питательных веществ);

 секреторные;

 пигментные.

* Цитоскелет

Микротрубочки, микрофи-ламенты, промежуточные филаменты (микрофибриллы )

 опорно-каркасная;

 формообразующая;

 циклоз.

* О Р Г А Н О И Д Ы

Гладкая ЭПС – система каналов, пузырьков ограниченных одинарными мембранами

 синтез липидов;

 синтез олигосахаридов;

 образование пероксисом;

 транспортная;

 детоксикация;

 компартментализация.

Шероховатая (гранулярная) ЭПС – система уплощенных цистерн и каналов, на мембране которых располагаются рибосомы

 синтез белков;

 созревание белков;

 транспортная;

 компартментализация.

Мито-хондрии

Наружная мембрана – гладкая; внутренняя – с кристами ; межмембранное пространство; матрикс, в котором ДНК , рибосомы , собственные белки

 аккумуляция энергии (синтез АТФ);

 синтетическая (синтез собственных белков);

 генетическая (цитоплазматическая наследственность);

 компартментализация.

Комплекс

Гольджи

Система уплощенных мембранозных мешков , окруженных множеством макро - и микропузырьков (вакуолей). Формирующая поверхность находится возле ядра и содержит микропузырьки . Созре-вающая поверхность вклю-чает макропузырьки , образующие вакуолярную зону комплекса Гольджи

 хранение, упаковка, созревание веществ, синтезированных в клетке;

 формирование

первичных лизосом;

 образование секреторных гранул;

 синтез полисахаридов;

 синтез липидов;

 компартментализация.

Лизосома

Пузырек, окруженный одинарной мембраной, с гомогенным содержимым (набором гидролаз )

 гетерофагия;

 аутофагия;

 компартментализация.

Перокси-сома

Пузырек, окруженный одинарной мембраной, с кристаллоподобной сердцевиной (оксидазы ) и матриксом (каталазы )

 перекисное окисление;

 компартментализация.

Рибосома

Малая и большая субъединицы

 синтез белков (трансляция).

Микро-трубочка

Полый цилиндр , образованный спирально расположенными димерами белка тубулина

 опорно-каркасная (сетка цитоскелета, основание для ресничек и жгутиков);

Клеточ-ный

центр

Центросфера и диплосома (2 центриоли ). Каждая центриоль – это полый цилиндр (9х3)+0 из 9 триплетов микротрубочек

 центр организации микротрубочек (ЦОМТ);

 участие в делении клетки (формирование веретена деления).

Микрофи-

ламенты

Актин , реже

немышечный миозин

 сократительная;

 образование десмосом.

Реснички

и жгутики

Выросты цитоплазмы (длина ресничек

10 – 20 мкм,

жгутиков >1000 мкм),

покрытые плазмалеммой

 движение клетки;

 транспорт веществ и жидкости.


Контрольные тестовые вопросы к разделу:

«Структурная организация клетки»

1) Сходство строения и жизнедеятельности клеток организмов разных царств живой природы – одно из положений:

1) теории эволюции;

2) клеточной теории;

3) учения об онтогенезе;

4) законов наследственности.

2) По строению клетки все организмы разделяются на две группы:

1) прокариоты и эукариоты;

3) рибосомные и безрибосомные;

4) органоидные и безорганоидные.

3) Лизосомы формируются в:

1) комплексе Гольджи;

2) клеточном центре;

3) пластидах;

4) митохондриях.

4) Роль цитоплазмы в растительной клетке:

1) защищает содержимое клетки от неблагоприятных усло­вий;

2) обеспечивает избирательную проницаемость веществ;

3) осуществляет связь между ядром и органоидами;

4) обеспечивает поступление в клетку веществ из окружающей среды.

5) Собственные ДНК и рибосомы в клетках эукариот имеют:

1) лизосомы и хромопласты;

2) митохондрии и хлоропласты;

3) клеточный центр и вакуоли;

4) аппарат Гольджи и лейкопласты.

6) Наличие различных пластид характерно для клеток:

1) грибов;

2) животных;

3) растений;

4) бактерий.

7) Сходство функций хлоропластов и митохондрий состоит в том, что в них происходит:

1) синтез молекул АТФ;

2) синтез углеводов;

3) окисление органических веществ;

4) синтез липидов.

8) В митохондриях в отличие от хлоропластов не происходит синтез молекул:

2) глюкозы;

9) Эукариоты:

1) способны к хемосинтезу;

2) имеют мезосомы;

3) не имеют многих органоидов;

4) имеют ядро с собственной оболочкой.

10) Лейкопласты - это органоиды клетки, в которых:

4) накапливается крахмал.

11) Эндоплазматическая сеть обеспечивает:

1) транспорт органических веществ;

2) синтез белков;

3) синтез углеводов и липидов;

4) все перечисленные процессы.

1) растений;

2) бактерий;

3) животных;

4) грибов.

13) В клетках прокариот имеются:

2) рибосомы;

3) митохондрии;

4) всё перечисленное.

14) В митохондриях происходит:

1) накопление синтезируемых клеткой веществ;

2) клеточное дыхание с запасанием энергии;

3) формирование третичной структуры белка;

4) темновая фаза фотосинтеза.

15) На шероховатой эндоплазматической сети находится много:

1) митохондрий;

2) лизосом;

3) рибосом;

4) лейкопластов.

16) Общим признаком животной и растительной клетки является:

1) гетеротрофность; 3) наличие хлоропластов;

2) наличие митохондрий; 4) наличие жесткой клеточной стенки.

17) Хромопласты - это органоиды клетки, в которых:

1) происходит клеточное дыхание;

2) осуществляется процесс хемосинтеза;

3) находятся пигменты красного и желтого цветов;

18) Ядрышко участвует в синтезе:

1) митохондрий;

2) лизосом;

3) субъединиц рибосом;

4) ядерной оболочки.

19) Клеточный центр участвует в:

1) удалении отживших органоидов клетки;

2) обмене веществ между клеткой и окружающей средой;

3) формировании веретена деления;

4) синтезе АТФ.

20) Согласно клеточной теории, клетка – это единица:

1) мутации и модификации;

2) наследственной информации;

3) эволюционных превращений;

4) роста и развития организмов.

21) Структура ядра клетки, в которой сосредоточена наследственная информация:

1) хромосомы;

2) ядрышко;

3) ядерный сок;

4) ядерная оболочка.

22) Ядерное вещество свободно располагается в цитоплазме:

1) бактерий;

2) дрожжей;

3) одноклеточных водорослей;

4) одноклеточных животных.

23) В клетках растений, грибов и бактерий клеточная мембрана состоит:

1) только из белков;

2) только из липидов;

3) из белков и липидов;

4) из полисахаридов.

24) Пластиды имеются в клетках:

1) всех растений;

2) только животных;

3) всех эукариот;

4) во всех клетках.

25) Функция аппарата Гольджи заключается в:

1) накоплении белков для последующего выведения;

2) синтезе белков и последующем их выведении;

3) накоплении белков для последующего расщепления;

4) синтезе белков и последующем их расщеплении.

26) Гликокаликс характерен для клеток:

1) животных;

2) всех прокариот;

3) всех эукариот;

4) всех перечисленных.

27) Хлоропласты – это органоиды клетки, в которых:

1) происходит клеточное дыхание;

2) осуществляется процесс фотосинтеза;

3) находятся пигменты красного и желтого цветов;

4) накапливается вторичный крахмал.

28) К немембранным органоидам клетки относится :

1) эндоплазматический ретикулум;

2) клеточный центр;

3) аппарат Гольджи;

4) лизосомы.

29) Ядро отсутствует в клетках:

1) простейших;

2) низших грибов;

3) бактерий;

4) одноклеточных зеленых водорослей.

30) Клеточный центр участвует в:

1) синтезе белков;

2) синтезе углеводов;

3) делении клетки;

4) синтезе рибосом.

31) Органоиды клеток эукариот, внутренняя мембрана которых образует многочисленные кристы, – это:

1) лизосомы;

2) пероксисомы;

3) рибосомы;

4) митохондрии.

32) Ядерная оболочка:

1) отделяет ядро от цитоплазмы;

2) состоит из двух мембран;

3) пронизана порами;

4) обладает всеми перечисленными свойствами.

33) Рибосомы:

1) имеют мембрану;

2) находятся на поверхности гладкой эндоплазматической сети;

3) состоят из двух субъединиц;

4) участвуют в синтезе АТФ.

34) Плазматическая мембрана клетки:

1) хранит наследственную информацию;

2) обеспечивает транспорт аминокислот к месту синтеза белка;

3) обеспечивает избирательный транспорт веществ в клетку;

4) участвует в синтезе белков.

35) Двумембранное строение имеют следующие органоиды:

1) митохондрии;

2) лизосомы;

3) рибосомы;

4) центриоли.

36) Лизосомы участвуют в:

1) транспорте веществ, синтезированных в клетке;

2) накоплении, химической модификации и упаковке синтезирован­ных в клетке веществ;

3) синтезе белков;

4) удалении отживших органоидов клетки.

37) Ядрышко участвует в:

1) энергетическом обмене;

2) синтезе рибосом;

3) организации деления клетки;

4) транспорте синтезированных в клетке веществ.

38) Рибосомы:

1) окружены двойной мембраной;

2) находятся на поверхности шероховатой эндоплазматической сети;

4) осуществляют внутриклеточное пищеварение.

39) Наличие в клетке целлюлозной клеточной стенки характерно для:

1) грибов;

2) животных;

3) растений;

4) бактерий.

40) Субъединицы рибосом образуются в:

1) шероховатой ЭПС;

2) кариоплазме;

3) комплексе Гольджи;

4) ядрышке.

41) В лизосомах находятся ферменты, осуществляющие процесс:

1) гликолиза;

2) окислительного фосфорилирования;

3) гидролиза биополимеров;

4) расщепления перекиси водорода.

42) Р. Гук впервые увидел под микроскопом и описал клетки:

1) простейших; 3) клубня картофеля;

2) пробки; 4) кожи угря.

43) Основная функция лизосом в клетке – это:

1) внутриклеточное пищеварение;

2) синтез белка;

3) образование молекул АТФ;

4) репликация ДНК.

44) Клетки растений в отличие от клеток животных не способны:

1) осуществлять дыхание;

2) к фагоцитозу;

3) осуществлять фотосинтез;

4) к синтезу белка.

45) B аппарате Гольджи образуются:

1) лизосомы;

2) рибосомы;

3) хлоропласты;

4) митохондрии.

46) Митохондрии отсутствуют в клетках:

1) бактерий;

2) животных;

3) грибов;

4) растений.

47) Клеточная стенка растительных клеток преимущественно состоит из:

1) сахарозы;

2) гликогена;

4) целлюлозы.

48) Прокариотической клеткой является:

1) спирохета;

2) вирус СПИДа;

3) лейкоцит;

4) малярийный плазмодий.

49) Окис­ление пировиноградной кислоты с освобождением энергии происходит в:

1) рибосомах;

2) ядрышке;

3) хромосомах;

4) митохондриях.

50) Обмен веществ между клеткой и окружающей средой ре­гулируется:

1) плазматической мембраной;

2) эндоплазматической сетью;

3) ядерной оболочкой;

4) цитоплазмой.

51) Животные клетки в отличие от растительных способны к:

1) синтезу белка; 3) обмену веществ;

2) фагоцитозу; 4) делению.

52) Ферменты для внутриклеточного пищеварения содержатся в:

1) рибосомах;

2) лизосомах;

3) митохондриях;

4) хлоропластах.

53) Каналы эндоплазматической сети ограничены:

1) одной мембраной;

2) полисахаридами;

3) двумя мембранами;

4) слоем белка.

54) Все прокариотические и эукариотические клетки имеют:

1) митохондрии и ядро;

2) вакуоли и комплекс Гольджи;

3) ядерную мембрану и хлоропласты;

4) плазматическую мембрану и рибосомы.

55) О единстве органического мира свидетельствует:

1) наличие ядра в клетках живых организмов;

2) клеточное строение организмов всех царств;

3) объединение организмов всех царств в систематические группы;

4) разнообразие организмов, населяющих Землю.

Ответы на контрольные тестовые вопросы:

1)-2; 2)-1; 3)-1;4)-3; 5)-2; 6)-3; 7)-1; 8)-2; 9)-4; 10)-4; 11)-4; 12)-2; 13)-2; 14)-2;

15)-3; 16)-2; 17)-3; 18)-3; 19)-3; 20)-4; 21)-1; 22)-1; 23)-3; 24)-1; 25)-1; 26)-1;

27)-2; 28)-2; 29)-3; 30)-3; 31)-4; 32)-4; 33)-3; 34)-3; 35)-1; 36)-4; 37)-2; 38)-2;

39)-3; 40)-4; 41)-3; 42)-2; 43)-1; 44)-2; 45)-1; 46)-1; 47)-4; 48)-1; 49)-4; 50)-1;

51)-2; 52)-2; 53)-1; 54)-4; 55)-2;

Библиография:

1. , Биология: Учебник. 2-е изд., испр. и доп.М.: ГОУ ВУНМЦ МЗ РФ, 2005. – 592 с.

2. Под ред. Биология с основами экологии: Учебник. 2-е изд., испр. и доп.СПб.:Издательство «Лань», 2004. – 688 с.: ил. – (Учебники для вузов. Специальная литература).

3. Биология. Т. I, II, III. – М.:Мир, 1990.

4. Биохимия и молекулярная биология . Пер. с англ. под ред. с соавт. – М.: Изд-во НИИ биомем химии РАМН, 1999.

5. С. Общая цитология:Учебник. – 2-е изд. – М.: Изд-во Моск. ун-та, 1984. – 352с., ил.

6. , Основы общей цитологии: Учебное пособие. – Л.: Изд-во Ленингр. ун-та, 1982. – 240с., Ил. 65.

7. Биологические мембраны. – М., 1975.

8. Финеан Дж., Колмэн Р . Мембраны и их функции в клетке. – М., 1977.

9. Intermediate First Year, Zoology : Authors (English Telugu Versions): Smt. K. Srilatha Devi, Dr. L. Krishna Reddy, Revised Edition: 2000.

10. A textbooik of cytology, genetics and evolution, ISBN -0, P. K. Gupta (a textbook for university students, published by Rakesh Kumar Rastogi for Rastogi publications, Shivaji Rood, Meerut - 250002.

Основы ЦИТОЛОГИИ: СТРУКТУРНАЯ ОРГАНИЗАЦИЯ КЛЕТКИ

Учебное пособие для студентов первого курса ФВСО. – Ставрополь: Изд - во СтГМА. – 2009. – 50с.

Доктор медицинских наук, профессор, заведующая кафедрой биологии с экологией;

Кандидат биологических наук, старший преподаватель кафедры биологии с экологией;

Кандидат медицинских наук, старший преподаватель кафедры биологии с экологией.

ЛР № ________________ от ________________

Сдано в набор. Подписано в печать. Формат 60х90 1/16. Бумага типог. №1. Печать офсетная. Гарнитура офсетная. Усл. печ. л. 2,0.

Уч.-изд. л 2,2. Заказ 2093. Тираж 100

Ставропольская государственная медицинская академия,

г . Ставрополь, ул. Мира, 310.

КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОЛОГИИ.

Раздел 1. ОСНОВЫ ЦИТОЛОГИИ .
Содержание раздела.


  1. Основные положения клеточной теории.
Химическая организация клетки .

2.Обмен веществ и энергии в клетках.

3. Реализация генетической информации.

4. Строение клетки. Особенности клеток растений, животных, грибов, бактерий. Вирусы.

Биология I Биоло́гия (греч. bios жизнь + logos учение) совокупность естественных наук о жизни как особом явлении природы. Предметом изучения служат строение, функционирование, индивидуальное и историческое (эволюция) развитие организмов…

dic.academic.ru Медицинская эциклопедия


  1. ОСНОВНЫЕ ПОЛОЖЕНИЯ КЛЕТОЧНОЙ ТЕОРИИ. ХИМИЧЕСКАЯ ОРГАНИЗАЦИЯ КЛЕТКИ.

  1. Отличия живого от неживого.

Жизнь –это одна из важнейших тайн Вселенной. Но дать определение этого понятия крайне сложно. Однако даже маленькие дети стараются определить это понятие. Обычно ребенок обращает внимание на то, что живые существа активно двигаются, дышат, питаются, растут… Правда, он редко совмещает все эти свойства живых существ. Однажды на уроке один мальчик высказал просто гениальную мысль: « Живое отличается от неживого тем, что умирает ».

И все же? Где же проходит черта между жизнью и смертью? Между живым и неживым? Оказывается, строгого определения жизни просто не существует.

Современная наука выделяет некоторые характерные для живых систем свойства.


  1. Специфическая организация.

  2. Обмен веществ и энергии.

  3. Размножение.
4. Рост и развитие.

5. Способность адаптироваться, то есть приспосабливаться к изменениям окружающей среды .

Некоторые из этих свойств присущи и неживой материи. Например, кристаллы тоже могут расти, но вот все пять свойств одновременно встречаются только в живых системах.

Свойства живой материи столь сложны, что являются предметом изучения нескольких биологических дисциплин, возникших на стыке биологии и физики, биологии и химии, биологии и информатики. Эти науки называются биофизика, биохимия, а вот информатика дает множество данных для нейрофизиологии.

Рост многоклеточных организмов сопровождается развитием. Чем сложнее устроены организмы, тем сложнее их развитие. Усложнение процессов развития выражается, прежде всего, в дифференцировке.

Под дифференцировкой понимают процессы образования из одной зародышевой клетки клеток разных типов.

У высших растений в результате дифференцировки возникают такие типы тканей как покровная, проводящая, запасающая, механическая.

У животных возникают четыре типа тканей: эпителиальная, соединительная, мышечная, нервная, которые составляют органы и системы органов.

Способность адаптироваться к окружающей среде – это также важнейшее свойство живого, живые системы меняются по мере того, как меняется окружающая среда. Адаптация - это очень широкое понятие. Она затрагивает поведенческие реакции животных, а также морфологические и генетические особенности организмов. Взаимоотношения организма и окружающей среды весьма жесткие. Поиск ответа на вечный вопрос, «быть или не быть» – главная тема живой природы. Если организмы способны изменит свое поведение, форму, процессы жизнедеятельности и саму наследственность, то они выживут, а если нет, то их ждет гибель. История жизни на Земле не раз демонстрировала это.

Однако не все так жестоко! Ведь существуют же организмы, которые миллионы лет не меняли своего облика. Вопрос о том, каким образом они дожили до наших дней, не менее интересен, чем вопрос о происхождении человека от обезьяны. Например, история известного моллюска наутилуса, ближайшие родственники которого вымерли 450 миллионов лет назад, а он все еще бороздит воды тропических морей.

Механизмами адаптации занимаются очень многие биологические дисциплины:


  • этология – наука о поведении животных,

  • экология – наука о взаимоотношениях живых существ друг с другом и с окружающей средой,

  • физиология – наука о функциях организма,

  • сравнительная анатомия – наука об изменениях в строении тела,

  • генетика – наука о механизмах наследственности и изменчивости.
Основной идеологической основой современной биологии является теория эволюции. Её основой является учение Чарльза Дарвина о движущих силах эволюции. Современная теория эволюции использует для доказательств существования этого процесса достижения различных биологических дисциплин, в том числе и самых современных, таких как молекулярная биология и генетика.

Теория эволюции – это каркас, на котором базируется современная биология, а фундаментом современной биологии является клеточная теория.

Специфическая организация.
Итак, первым и наиболее характерным свойством живых систем является специфическая организация.

Цель: Знать химический состав клетки, жизненный цикл, обмен веществ и энергии в клетке.

Клетка ­ это элементарная живая система. Основоположник клеточной теории Шванн. Клетки разнообразны по форме, по величине, по внутреннему устройству и функции. Размеры клеток колеблются от 7 микрометров и до 200 мкр у лимфоцитов. Клетка обязательно содержит ядро, если оно утрачивается, то клетка не способна к размножению. Эритроциты ­ не имеют ядра.

В состав клеток входят: белки, углеводы, липиды, соли, ферменты, вода.

В клетках различают цитоплазму и ядро. В цитоплазму включают гиалоплазму,

органеллы и включения.

Органеллы:

1. Митохондрии

2. Аппарат Гольджи

3. Лизосомы

4. Эндоплазматическая сеть

5. Клеточный центр

Ядро имеет оболочку ­ кариолемму, пронизанную мелкими отверстиями, и внутреннее содержимое - кариоплазму. Имеются несколько ядрышек, не имеющих оболочку, нити хроматина и рибосомы. В самих ядрышках находятся РНК, а в кариоплазме ДНК. Ядро участвует в синтезе белка. Клеточная оболочка называется цитоплазма, состоит из белков и липидных молекул, которые обеспечивают возможность прохождения в клетку и выхода из нее в окружающую среду вредных веществ и растворимых в воде жиров.

Эндоплазматическая сеть ­ образована двойными мембранами, представляет собой канальца и полости, на стенках рибосомы. Она может быть ­ зернистой и гладкой. Физиология ­ синтез белка.

Митохондрии ­ оболочка из 2­х мембран, от внутренней мембраны отходят кристы, содержимое называют матриксом, богат ферментами. Энергетическая система в клетке. Чувствительны к некоторым воздействиям, астматическому давлению и др.

Комплекс Гольджи ­ имеет вид корзиночки или сетки, состоит из тонких нитей.

Клеточный центр ­ состоит из центра сферы, внутри которой центриоли связанные с перемычкой, участвуют в делении клетки.

Лизосомы ­ содержать зерна которые обладают гидролитической активностью и участвуют в пищеварении.

Включения: трофические (белки, жиры, гликоген), пигментные, экскреторные.

Клетка обладает основными жизненными свойствами, обменом веществ, чувствительностью и способностью к размножению. Клетка живет во внутренней среде организма (кровь, лимфа, тканевая жидкость).

Существует два энергетических процесса:

1) Окисление - происходит с участием кислорода в митохондриях, выделяется 36 молекул АТФ.

2) Гликолиз ­ происходит в цитоплазме, дает 2 молекулы АТФ.

Нормальная жизнедеятельность в клетке осуществляется при определенной

концентрации солей в окружающей среде (астматическое давление = 0,9 % NCL)

0,9 % NCL ­ изометрический раствор

0,9 % NCL > ­ гипертонический

0,9 % NCL < ­ гипотонический

0.9%
0.9%

>0.9%
<0.9%
10

Рис. 3

При помещении клетки в гипертонический раствор вода выходит из клетки и клетка сжимается, а при помещении ее в гипотонический раствор, вода устремляется в клетку, клетка набухает и взрывается.

Клетка может захватывать крупные частицы путем фагоцитоза, а растворы путем пиноцитоза.

Движения клеток:

а) амебовидный вид

б) скользящий

в) при помощи жгутиков или ресничек.

Деление клеток:

1) непрямое (митоз)

2) прямое (амитоз)

3) мейоз (образование половых клеток)

Митоз ­ выделяют 4 фазы:

1) профаза

2) метафаза

3) анафаза

4) телофаза

Профаза ­ характеризуется формированием в ядре хромосом. Клеточный центр увеличивается, центриоли удаляются друг от друга. Исчезают ядрышки.

Метафаза ­ расщепление хромосом, исчезновение ядерной оболочки. Клеточный центр образует веретено деления.

Анафаза ­ дочерние хромосомы возникшие при расщеплении материнских, расходятся к полюсам.

Телофаза ­ формируются дочерние ядра и происходит деление тела клетки, путем истончения центральной части.

Амитоз ­ начинается с деления ядрышек путем перегруппировки, затем идет деление цитоплазмы. В некотором случае деление цитоплазмы не происходит. Образуются ядерные клетки.

Размер: px

Начинать показ со страницы:

Транскрипт

1 2012 Филиал ГАОУ СПО «Энгельсский медицинский колледж» в г. Марксе Учебное пособие для студентов «Основы цитологии. Клетка. Основы гистологии. Ткани» Специальность: Преподаватель: Зепп И.А. Утвержден на заседании ЦМК Общепрофессиональных дисциплин Протокол от Председатель Бабкина Л.М. 1 Маркс 2012

2 Содержание Стр. Пояснительная записка...3 Введение...4 Общие положения по основам цитологии и гистологии...5 Основы цитологии. Клетка.5 Компоненты клетки: строение и функции 5 Химический состав клетки Жизненный цикл клетки Возбудимость клетки..8 Обмен веществ в клетке..9 Основы гистологии. Классификация тканей. Эпителиальная ткань Соединительная ткань.. 10 Мышечная ткань 12 Нервная ткань 12 Классификация нейронов.13 Графологические структуры 15 Граф 1. формы клеток 15 Граф 2. строение клеток 15 Граф 3. химический состав клеток...15 Граф 4. деление клеток..16 Граф 5 ткань 16 Граф 6. эпителиальная ткань.16 Граф 7. соединительная ткань...17 Граф 8. хрящевая ткань..17 Граф 9. костная ткань.17 Граф 10. мышечная ткань..18 Граф 11. нервная ткань..18 Граф 12. классификация нейронов...18 Граф 13. строение синапса...18 Задания для самоконтроля 19 Эталон ответов.30 Список литературы 32 2

3 Пояснительная записка Пособие предназначено для самостоятельной работы студентов, обучающихся по специальности «Сестринское дело» при изучении раздела программы анатомии и физиологии человека «Основы цитологии. Клетка. Основы гистологии. Ткани». В помощь студенту в методическом пособии дается исходный уровень знаний, необходимый для успешного освоения материала по данному разделу, а также представлены разноуровневые тренировочные задания по основным темам раздела для самостоятельного выполнения. В конце пособия представлен шаблон ответов. Учебно-методическое пособие разработано в соответствии с ФГОС специальности «Сестринское дело», квалификационной характеристикой медицинской сестры и требованиями рабочей программы дисциплины «Анатомия и физиология человека». 3

4 Введение Современная медицинская наука имеет весомые достижения в сферах изучения гистологии и цитологии. Они основываются как на фундаментальных исследованиях естественных наук, так и на клиническом изучении разнообразной патологии органов, систем, организма в целом. В начале XXI века возникли новые направления в медицинской науке, которые позволили по-новому выстроить наше понимание строения и функций организма человека, его адаптации к различным проявлениям социума. Организм человека представляет собой целостную систему, в которой можно выделить ряд иерархических уровней организации живой материи клетки, ткани, органы, системы органов. Каждый уровень структурной организации имеет морфофункциональные особенности, отличающие его от других уровней. Важное место в системе медицинского образования занимает гистология и цитология, закладывая основы научного структурно-функционального подхода в анализе жизнедеятельности человека в норме и патологии. Цитология и гистология наряду с физиологией, биохимией и другими науками формирует фундамент современной медицины. Цитология и гистология - науки о строении, процессах жизнедеятельности, воспроизведении и гибели клеток, а также структурной организации тканей и их клеток во взаимосвязи с функциональными особенностями, принципами жизнедеятельности, происхождением, специализацией. В третьем тысячелетии цитология и гистология стали превращаться из наук фундаментальных в прикладные, способные ставить и решать актуальные задачи современной медицины. С их помощью были решены вопросы производства биологических препаратов, лабораторного получения и клонирования микроорганизмов, начата разработка основ клеточной и тканевой терапии. Гистология тесно связана с рядом биологических и медицинских наук - общей и сравнительной анатомией, физиологией, патологической физиологией и патологической анатомией, а также некоторыми клиническими дисциплинами (внутренние болезни, акушерство и гинекология и др.). Будущим медицинским работникам необходимо хорошее знание строения клеток и тканей органов, являющихся структурной основой всех видов жизнедеятельности организма. Значимость гистологии и цитологии для медицинских работников возрастает ещѐ потому, что для современной медицины характерно широкое применение цитологических и гистологических методов при проведении анализов крови, костного мозга, биопсии органов и пр.

5 Общие положения по основам цитологии и гистологии Основы цитологии. Клетка. Клетка (cellula) Клетка это наименьшая структурно-функциональная единица организма, обладающая основными свойствами живой материи: чувствительностью, обменом веществ и способностью к размножению. Клетки различаются по размеру, форме, строению и функции. Размеры клеток микроскопические. По форме различают шаровидные, веретеновидные, чешуйчатые (плоские), кубические, столбчатые (призматические), звездчатые, отростчатые (древовидные) клетки. Каждая клетка (Рис.1.) содержит ядро и цитоплазму с включенными в нее органеллами и включениями. Компоненты клетки: строение и функции I. Клеточная оболочка (Рис.2.), плазмолемма, покрывает клетку и отделяет ее от окружающей среды. Через нее осуществляется транспорт веществ внутрь клетки и из нее. По своему составу представляет собой сложный липопротеиновый комплекс. II. Цитоплазма состоит из гиалоплазмы, органелл и включений. 1. Гиалоплазма основное вещество цитоплазмы, участвует в обменных процессах клетки. 2. Органеллы постоянные части клетки: эндоплазматическая сеть, митохондрии, комплекс Гольджи, клеточный центр (центросома), лизосомы. Эндоплазматическая сеть (рис.3.) каналы, образованные мембранами и связанные с клеточной мембраной; представлена в виде агранулярной (гладкой) и гранулярной (зернистой) сетей; гладкая сеть участвует в обмене липидов и полисахаридов, гранулярная в синтезе белка, к ее стенкам прилегают 5

6 рибосомы (место синтеза клеточного белка) плотные частицы, содержащие белок и РНК; Митохондрии (рис.4.) расположены возле ядра; имеют форму палочек, зерен; состоят из двух мембран: внешней и внутренней, которая образует складки (крипты) с расположенными в них ферментами; являются энергетическими органами клетки, участвуют в процессах окисления, фосфорилирования; Комплекс Гольджи (Рис. 5.) внутриклеточный сетчатый аппарат в виде сетки и пузырьков вокруг ядра; участвует в транспорте и химической обработке веществ, в выведении за пределы клетки продуктов ее жизнедеятельности; Клеточный центр (Рис. 6.) располагается обычно возле ядра или комплекса Гольджи и содержит два плотных образования центриоли; участвует в процессе деления клеток и в образовании подвижных органов жгутиков, ресничек; Лизосомы (Рис.7.) пузырьки заполненные ферментами, «санитары» клетки: растворяют ее отжившие элементы. 3. Включения временные образования, которые появляются и исчезают в процессе обмена веществ. Они могут быть белковыми, жировыми, пигментными и другими, а также физиологическими или патологическими. 4. Специализированные органоиды структуры, которые выполняют специфические функции и находятся в некоторых типах клеток: Миофибриллы длинные нити, проходящие внутри мышечного волокна; Нейрофибриллы выявляются в цитоплазме тела и всех отростков нервных клеток. Это тонкие нити, которые проводят возбуждение (нервные импульсы); Реснички это плазматические выросты, располагаются на свободной поверхности клеток, их движение перемещает частички пыли, жидкость. Жгутики это плазматические выросты, длиннее ресничек, имеются у сперматозоидов. Ворсинки микровыросты оболочки клетки. 6

7 III. Ядро (Рис. 8.) располагается внутри клетки, хранит генетическую информацию, участвует в синтезе белка. Ядро покрыто ядерной оболочкой. Заполнено ядро нуклеоплазмой, в котором содержится одно или два ядрышка (синтезирует белок, является носителем генов в виде ДНК, содержит РНК) и хроматин в виде плотных зернышек или лентовидных структур, богатых белком и хорошо окрашивающихся. Химический состав клетки Химические элементы, имеющиеся в клетке, делят на три большие группы: макроэлементы (углерод, кислород, водород и азот), мезоэлементы (сера, фосфор, калий, кальций, натрий, железо, магний, хлор) и микроэлементы (цинк, йод, медь, марганец, фтор, кобальт и др.). Вещества клетки делят на неорганические и органические. К неорганическим веществам относятся вода и минеральные соли. Вода в клетке является растворителем, средой для протекания реакций. Минеральные соли в клетке могут находиться в растворенном или не растворенном состояниях. Растворимые соли диссоциируют на ионы. Наиболее важными катионами являются калий и натрий, облегчающие перенос веществ через мембрану и участвующие в возникновении и проведении нервного импульса; кальций, который принимает участие в процессах сокращения мышечных волокон и свертывании крови, магний, входящий в состав хлорофилла, и железо, входящее в состав ряда белков, в том числе гемоглобина. Цинк входит в состав молекулы гормона поджелудочной железы инсулина, медь требуется для процессов фотосинтеза и дыхания. Важнейшими анионами являются фосфат-анион, входящий в состав АТФ и нуклеиновых кислот, и остаток угольной кислоты, смягчающий колебания рн среды. Недостаток кальция и фосфора приводит к рахиту, нехватка железа к анемии. Органические вещества клетки представлены углеводами, липидами, белками, нуклеиновыми кислотами, АТФ, витаминами и гормонами. Жизненный цикл клетки Клеточный цикл это период существования клетки от момента еѐ образования путем деления материнской клетки до собственного деления. Жизнь клетки между делениями называется интерфазой. Интерфаза состоит из 3-х периодов: пресинтетический, синтетический и постсинтетический. Пресинтетический период следует сразу за делением. В это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом. В ядре 7

8 клетки набор генетического материала = 2п2с. В синтетический период происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков. Набор генетического материала (хроматина) становится 2п4с. В постсинаптический период клетка запасается энергией, синтезируются белки ахроматинов ого веретена, идет подготовка к митозу. Существуют различные типы деления клеток: I. Амитоз (прямое) (Рис.9.) клетка делится на две равные или неравные части. Встречается редко. II. Митоз (непрямое) (Рис.10.) наиболее распространено. Митоз состоит из 4-ч фаз: 1. Профаза - начальная фаза митоза. В это время начинается спирализация ДНК и укорочение хромосом. Ядрышко и ядерная оболочка исчезает, и ядро распадается, центриоли клеточного центра расходятся по полюсам клетки, между ними растягиваются нити веретена деления (2n4с). 2. Метафаза - хромосомы движутся к центру, к ним прикрепляются нити веретена. Хромосомы располагаются в плоскости экватора, состоят из 2-х хроматид. Число хромосом в клетке (2n4с). 3. Анафаза - сестринские хроматиды (появившиеся в синтетическом периоде при удвоении ДНК) расходятся к полюсам. Набор хромосом остается 2n, но хроматид Телофаза (telos греч. - конец) обратна профазе: хромосомы становятся тонкими длинными, формируются ядерная оболочка и ядрышко. Заканчивается телофаза разделением цитоплазмы с образованием двух дочерних клеток (2n2c). III. Мейоз (Рис.11.) репродуктивное деление, при котором количество хромосом уменьшается вдвое (гаплоидный, единичный набор хромосом). Так размножаются половые клетки. Возбудимость клетки Некоторые клетки и ткани (нервная, мышечная и железистая) специально приспособлены к осуществлению быстрых реакций на раздражение. Такие клетки и ткани называют возбудимыми, а их способность отвечать на раздражение возбуждением называют возбудимостью. 8

9 В ответ на действие раздражителей в возбудимых клетках возникает возбуждение совокупность сложных физических, физико-химических, химических процессов и функциональных изменений. Обязательным признаком возбуждения является изменение электрического состояния поверхностной клеточной мембраны. Клетки при возбуждении переходят от состояния физиологического покоя к состоянию свойственной данной клетке физиологической деятельности: мышечное волокно сокращается, железистая клетка выделяет секрет. Обратное возбуждению явление торможение нервный процесс, приводящий к угнетению или предупреждению возбуждения. Обмен веществ в клетке Клетка усваивает поступающие вещества, расщепляет их с образованием энергии, необходимой для теплопродукции, выделения секретов, движений и нервной деятельности; синтезирует сложные вещества. Из клетки выводятся конечные продукты обмена веществ. Основы гистологии. Классификация тканей. Эпителиальная ткань. Ткани это филогенетически сложившаяся система клеток и их производных, характеризующаяся общностью развития, строения и функционирования. Различают четыре вида тканей (Рис.12.): 1. Эпителиальная; 2. Соединительная, или ткани внутренней среды (кровь, лимфа, собственно соединительная ткань, хрящ и кость); 3. Мышечные; 4. Нервная. Эпителиальные ткани (Textus epitheliales) Эпителиальные ткани покрывают всю наружную поверхность тела, внутренние поверхности полых органов (пищеварительного тракта, дыхательных и мочеполовых путей), 9

10 серозные оболочки. Входят в состав большинства желез организма (железы ЖКТ, щитовидная, потовые, сальные железы и т.д.). По строению и расположению клеток различают (Рис.13.): I. Однослойный эпителий все клетки располагаются на базальной мембране; по форме может быть: 1. Плоским выстилает поверхность серозных оболочек, альвеол, сосуды; 2. Кубическим выстилает канальцы почек, мелкие бронхи; 3. Призматическим (цилиндрическим) внутренняя поверхность желудка, кишечника, желчного пузыря. II. Многослойный к базальной мембране примыкает лишь внутренний слой клеток, а наружные слои утрачивают связь с ней. По степени ороговения подразделяется на: 1. Ороговевающий (эпителий кожи); 2. Неороговевающий (эпителий роговицы). III. Переходный эпителий (эпителий мочеточников, мочевого пузыря) занимает промежуточное положение. Функции: 1. Защитная эпителий кожи; 2. Секреции; 3. Всасывания эпителий кишечника; 4. Выделения эпителий почечных канальцев; 5. Газообмена эпителий в легких. Соединительная ткань (Textus connectivus) Соединительные ткани состоят из клеток и межклеточного вещества, в которое входят волокнистые структуры и аморфное вещество. Соединительные ткани образуют опорные системы организма: кости скелета, хрящи, связки, фасции и сухожилия. Входя в состав органов, они выполняют механическую, защитную и трофическую функции (формирование стромы органов, питание клеток и тканей, транспорт кислорода и углекислого газа, различных веществ), защищают организм от микроорганизмов и вирусов, предохраняют органы от повреждений и объединяют различные виды тканей между собой. Соединительную ткань подразделяют на две большие группы: I. Собственно соединительная ткань, в которой различают: 1. Волокнистую ткань: 10

11 Рыхлая неоформленная сопровождает кровеносные сосуды, протоки и нервы, отделяет органы друг от друга и от стенок полостей тела, образует строму органов; Плотная оформленная и неоформленная связки, сухожилия, фасции, апоневрозы, эластические волокна. 2. Соединительную ткань с особыми свойствами представлена ретикулярной, жировой, слизистой и пигментной тканями. II. Специальная соединительная ткань с опорными (хрящевая, костная ткань) и гемопоэтическим (миелоидная и лимфоидная ткани) свойствами. Хрящевая ткань (textus cartilaginous) (Рис.14.) состоит из клеток (хондроцитов) и межклеточного вещества повышенной плотности. Эта ткань составляет основную массу хрящей, обладающих опорными функциями, поэтому они входят в состав различных частей скелета. В теле человека различают гиалиновую (хрящи трахеи, бронхов, суставных поверхностей костей), эластическую (ушная раковина, надгортанник) и волокнистую (межпозвоночные диски, соединения лонных костей) хрящевые ткани. Костная ткань (textus osseus) (рис.15.) образует скелет головы и конечностей, осевой скелет туловища человека, определяет форму тела организма, защищает органы, расположенные в черепе, грудной и тазовой полостях, принимает участие в минеральном обмене. Костная ткань состоит из клеток (остеоцитов, остеобластов, остеокластов) и межклеточного вещества. Различают: I. Ретикулофиброзную, или грубоволкнистую, костную ткань присуща зародышам и молодым организмам; II. Пластинчатую кости скелета; она может быть: 1. Компактной в диафизах трубчатых костей; 2. Губчатой в эпифизах костей. Кровь, лимфа и межтканевая жидкость являются внутренней средой организма. Кровь доставляет тканям питательные вещества и кислород, удаляет 11

12 продукты обмена и углекислый газ, осуществляет выработку антител, переносит гормоны, регулирующие деятельность различных систем организма. Мышечная ткань (Textus musculares) Мышечные ткани подразделяют на (Рис.16.): 1. Гладкую (неисчерченную); 2. Поперечно-полосатую (исчерченную). Основным свойством этих тканей является способность к сокращению, что лежит в основе всех двигательных процессов в организме. Сократительными элементами мышечных тканей являются миофибриллы. Гладкая мышечная ткань входит в состав стенок внутренних органов (кишечник, матка, мочевой пузырь и т.д.), кровеносных сосудов и сокращается непроизвольно. Она имеет клеточное строение и обладает сократительным аппаратом в виде гладких миофибрилл. Гладкие мышечные клетки (миоциты) объединяются в пучки, а последние - в мышечные пласты, которые формируют часть стенки полых внутренних органов. Поперечно-полосатая мышечная ткань образует скелетные мышцы и сокращается произвольно. Структурной и функциональной единицей такой является миосимпласт. Миофибриллы в мышечных волокнах расположены более упорядоченно и состоят из регулярно повторяющихся фрагментов (саркомеров) с разными оптическими и физико-химическими свойствами, что обуславливает поперечную исчерченность всего волокна. Разновидностью мышечной ткани является сердечная поперечно-полосатая мышеная ткань, состоящая из кардиомиоцитов. Нервная ткань (Textus nervosus) Нервная ткань (Рис.17.) является основным структурным элементом органов нервной системы. Она состоит из нервных клеток (нейроцитов, или нейронов) и связанных с ними анатомически и функционально клеток нейроглии, которые выполняют разграничительную, опорную, защитную и трофическую функции. Важнейшим функциональным свойством нервной ткани является легкая возбудимость и передача импульсов. 12

13 В каждом нейроне выделяют (Рис.18.): 1. Тело, содержащее внутриклеточные структуры (ядро, рибосомы, ЭПС, КГ, митохондри); 2. Дендриты проводят импульсы к телу нейронов от периферических рецепторов и других нейронов; 3. Аксон проводит импульсы от тела нейрона к периферическим органам или к другим нервным клеткам. Классификация нейронов I. По числу цитоплазматических отростков: 1. Биполярные имеют 2 отростка (аксон и дендрит); 2. Мультиполярные имеют больше 2-х отростков; 3. Униполярные имеют один выраженный отросток. II. По функции: 1. Афферентные (чувствительные, рецепторные) нейроны несут импульсы от рецепторов к рефлекторному центру; 2. Промежуточные (вставочные, контактные) нейроны осуществляют связь между различными нейронами; 3. Эфферентные (двигательные, вегетативные, исполнительные) нейроны передают импульсы от ЦНС к эффекторам (рабочим органам). Пространства между нейронами заполняют глиальные клетки (нейроглия). Все клетки нейроглии делятся на два вида: I. Глиальные макрофаги (микроглия) состоят из мелких клеток, разбросанных в белом и сером веществе мозга. Выполняют фагоцитарную функцию. II. Глиоциты (макроглия): 1. Эпендимоциты выстилают спинномозговой канал и желудочки головного мозга; 2. Астроциты образуют опорный аппарат ЦНС; 3. Олигодендроциты окружают тела нейронов, выполняют функцию образования миелина. Передача нервного импульса от одного нейрона к другому осуществляется с помощью контактов, называемых синапсами. В любом синапсе различают три основных части (Рис.20.): 1. Пресинаптическая мембрана, в аксоплазме которой содержатся норадреналин и ацетилхолин. 13

14 2. Постсинаптическая мембрана, имеющая большое количество складок, содержащая холинорецепторы, взаимодействующие с ацетилхолином, адренорецепторы, взаимодействующие с норадреналином, а также фермент холинэстеразу, который разрушает ацетилхолин. 3. Синаптическая щель, заполненная межтканевой жидкостью и способствующая односторонности проведения возбуждения через синапс и синаптической задержки возбуждения. 14

15 Шаровидная Веретеновидная Чешуйчатая (плоская) Графологические структуры Формы клеток Отростчатая (древовидная) Кубическая Звездчатая Граф 1. Столбчатая (призматическая) Строение клетки Граф 2. Клеточная мембрана Цитоплазма Ядро Гиалоплазма Органеллы Включения Специализированные органоиды Эндоплазматическая сеть Митохондрии Комплекс Гольджи Клеточный центр (центросома) Лизосомы Миофибриллы Нейрофибриллы Реснички Жгутики Ворсинки Граф 3. Макроэлементы (углерод, кислород, водород, азот) Химический состав клетки Мезоэлементы (сера, фосфор, калий, кальций, натрий, железо, магний, хлор) Микроэлементы (цинк, йод, медь, марганец, фтор, кобальт) 15

16 Граф 4. Деление клеток Амитоз (прямое) Митоз (непрямое) Мейоз Интерфаза Профаза Метафаза Анафаза Телофаза Ткань Граф 5. Эпителиальная Соединительная Мышечная Нервная Кровь Лимфа Собственно соединительная ткань Хрящ Кость Эпителиальная ткань Граф 6. Однослойный Многослойный Переходный Плоский Ороговевающий Кубический Неороговевающий Призматический 16

17 Граф 7. Соединительная ткань Собственно соединительная ткань Специальная соединительная ткань Волокнистая С особыми свойствами С опорными свойствами С гемопоэтическими свойствами Рыхлая неоформленная Ретикулярная Жировая Хрящевая Костная Миелоидная Лимфоидная Плотная оформленная и неоформленная Слизистая Пигментная Граф 8. Хрящевая ткань Гиалиновая Эластическая Волокнистая Граф 9. Ретикулофиброзная (грубоволокнистая) Костная ткань Компактная Пластинчатая Губчатая 17

18 Граф 10. Мышечная ткань Гладкая (неисчерченная) Поперечно-полосатая (исчерченная) Граф 11. Нейрон Нервная ткань Нейроглия Тело Дендриты Аксон Глиальные макрофаги (микроглия) Глиоциты (макроглия) Эпендимоциты Астроциты Олигодендроциты Граф 12. По числу Цитоплазматических отростков Классификация нейронов Биполярные Афферентные По функции Мультиполярные Униполярные Эфферентные Строение синапса Граф 13. Пресинаптическая мембрана Постсинаптическая мембрана Синаптическая щель 18

19 ? Вопросы для самоконтроля: 1. Дайте определение термину «Клетка». 2. Расскажите о строении клетки. 3. Каков химический состав клетки? 4. Какие клетки называют возбудимыми? 5. Как происходит размножение клеток? Назовите фазы митоза. 6. Что называют тканью? 7. Назовите виды тканей. 8. Какие ткани относятся к эпителиальным? Особенности их строения и функции. 9. Основная особенность строения соединительной ткани. 10. Назовите виды соединительной ткани, их расположение, особенности строения и основные функции. 11. Дайте характеристику хрящевой ткани: строение, виды, расположение в организме. 12. Дайте характеристику костной ткани: расположение строение, функции. 13. Классификация мышечный тканей. 14. Строение и месторасположение гладкой мышечной ткани. 15. Исчерченная скелетная мышечная ткань, функциональные особенности. 16. Назовите структурно-функциональные особенности сердечной мышцы. 17. Где расположен нервная ткань? Ее строение. 18. Каковы особенности строения нейрона? 19. Виды нейронов. 19

20 Задание 1. Рассмотрите рисунки и ответьте на вопросы: 1. Что обозначено на рисунке А) под цифрами 1 10? 2. Определите тип ткани, разновидности которой представлены на рисунке Б). 20

21 3. Что обозначено на рисунке В) под цифрами 1 3? 4. Определите вид нейронов, представленных на рисунке Г) Задание 2. Заполните таблицы: Название органоидов или структур клетки Клеточная оболочка Цитоплазма Ядро Митохондрия Рибосомы Клеточный центр ЭПС Лизосомы Комплекс Гольджи Ядрышки А) Органоиды клетки Функции Б) Химический состав клетки Вещества клетки Значение Вода Фосфор Калий Натрий Хлор Кальций Магний Белки Жиры Углеводы Нуклеиновые кислоты АТФ В) Деление клетки (митоз) Стадия (фаза) Происходящие процессы Интерфаза Профаза Метафаза Анафаза Телофаза 21

22 Г) Классификация тканей Свойства Ткань Особенности Разновидности Функции Эпителиальная ткань Соединительная ткань Мышечная ткань Нервная ткань Задание 3. Дайте положительный (да) или отрицательный (нет) ответ на данные утверждения: 1. Эпителий желудка и кишечника относится к эпителиальным тканям. 2. Для эпителиальной ткани характерно отсутствие межклеточного вещества. 3. Для эпителиальной ткани характерны возбудимость и проводимость. 4. В эпителии отсутствуют кровеносные сосуды. 5. Внутренняя поверхность кровеносных сосудов относится к эпителиальной ткани. 6. Подкожная жировая клетчатка относится к эпителиальной ткани. 7. Для соединительных тканей характерно наличие хорошо развитого межклеточного вещества. 8. К клеткам соединительной ткани относятся клетки крови, жировые клетки, клетки хряща. 9. Для мышечной ткани характерны возбудимость и сократимость. 10. Сердечная мышца образована гладкой мышечной тканью. 11. Тело нервной клетки называется нейроном. 12. Нейрон всегда имеет только один аксон 13. По аксону возбуждение идет всегда только от тела клетки. 14. По дендритам возбуждение идет всегда только к телу нейрона. 15. По аксону чувствительного нейрона возбуждение передается к телу нервной клетки. Задание 4. Вставьте в предложение пропущенные слова. 1. Гладкая мышечная ткань входит в состав органов. 2. Сердечная мышечная ткань состоит из. 3. Поперечно-полосатая мышечная ткань образована. 4. Свойства мышечных тканей: и. 5. Отростки, по которым возбуждение передается к телу нейрона, называются. 22

23 6. Отростки, проводящие импульсы от тел клеток к другим клеткам или органам, называются. 7. Нейроны, имеющие только один длинный отросток, называются. 8. Большинство нейронов имеют много отростков и называются. 9. Передача нервного импульса от одного нейрона к другому осуществляется с помощью контактов, называемых. 10. Основными свойствами нервной ткани являются и. Задание 5. Дайте один правильный ответ: 1. Главным жизненным свойством любой живой клетки является: А) секреция Б) обмен веществ В) передвижение Г) нервный центр в коре большого мозга 2. ДНК и РНК в основном содержатся в составе: А) ядра Б) цитолеммы В) комплекса Гольджи Г) клеточного центра 3. Комплекс Гольджи в клетке выполняет функцию: А) пищеварительную Б) выделительную В) синтез белка Г) синтез АТФ 4. Митохондрии в клетке осуществляют: А) синтез белка Б) выделительную функцию В) синтез АТФ Г) пищеварение 5. Лизосомы в клетке осуществляют: А) синтез белка Б) синтез АТФ В) выделение Г) пищеварение, фагоцитоз 6. Клеточный центр принимает активное участие в: А) синтезе АТФ Б) синтезе ДНК и РНК В) делении клетки Г) обмене веществ 23

24 7. Рибосомы находятся в: А) эндоплазматической сети Б) митохондриях В) комплексе Гольджи Г) лизосомах 8. Цитолемма осуществляет в клетке: А) синтез белков Б) синтез жиров В) синтез углеводов Г) регуляцию поступления и выхода веществ 9. Нуклеоплазма является важной составной частью: А) цитоплазмы Б) ядра В) цитолеммы Г) органелл 10. Цилиндрический эпителий выстилает внутреннюю поверхность: А) трахеи, бронхов Б) желудка, тонкого кишечника В) канальцев почек Г) глотки, пищевода 11. Однослойный многорядный реснитчатый (мерцательный) эпителий выстилает поверхность: А) трахеи, бронхов Б) желудка, тонкого кишечника В) мочеточников Г) пищевода 12. Для роговицы глаза, слизистой полости рта, пищевода типичным является эпителий: А) кубический Б) цилиндрический В) многослойный ороговевающий Г) многослойный неороговевающий 13. Стенки мочеточников и мочевого пузыря выстилает эпителий: А) однослойный плоский Б) многослойный переходный В) кубический Г) цилиндрический 14. кожа человека покрыта эпителием: А) однослойным плоским Б) кубическим В) многослойным плоским ороговевающим Г) многослойным плоским неороговевающим 24

25 15. Большое содержание межклеточного вещества характерно для: А) эпителиальной Б) соединительной В) мышечной Г) нервной 16. Коллагеновые волокна являются характерными компонентами ткани: А) нервной Б) мышечной В) эпителиальной Г) соединительной 17. Эластические волокна являются составными компонентами ткани: А) соединительной Б) эпителиальной В) нервной Г) мышечной 18. Ретикулярная ткань является разновидностью соединительной ткани: А) волокнистой рыхлой Б) волокнистой плотной В) со специальными свойствами Г) скелетной 19. Жировая ткань - разновидность соединительной ткани: А) волокнистой рыхлой Б) волокнистой плотной В) со специальными свойствами Г) скелетной 20. Пигментная ткань является разновидностью соединительной ткани: А) волокнистой рыхлой Б) волокнистой плотной В) со специальными свойствами Г) скелетной 21. Слизистая, или студенистая, ткань - это разновидность соединительной ткани: А) волокнистой рыхлой Б) волокнистой плотной В) со специальными свойствами Г) скелетной 22. Гиалиновый хрящ образует: А) хрящи ушной раковины, надгортанника Б) почти все суставные хрящи В) межпозвоночные диски Г) хрящ лобкового симфиза 25

26 23. Эластический хрящ образует: А) хрящи ушной раковины, слуховой трубы Б) хрящи трахеи и крупных бронхов В) межпозвоночные диски Г) реберные хрящи 24. Волокнистый хрящ входи в состав: А) хрящей ушной раковины и слуховой трубы Б) почти всех суставных хрящей В) межпозвоночных дисков, хрящей лобкового симфиза Г) хрящей стенок воздухоносных путей 25. Клетки, образующие хрящевую ткань, - это: А) остеобласты Б) остеоциты В) миоциты Г) хондроциты 26. Клетки, образующие костную ткань, - это: А) остеокласты Б) остеоциты В) миоциты Г) хондроциты 27. Основным функциональным свойством мышечной ткани является: А) возбудимость Б) проводимость В) сократимость Г) рефрактерность 28. Главным сократительным элементом мышечной ткани являются: А) миофибриллы Б) тонофибриллы В) нейрофибриллы Г) эластические волокна 29. Важнейшим функциональным свойством нервной ткани является: А) автоматизм Б) легкая возбудимость и передача импульсов В) рефрактерность Г) утомляемость 30. Специфическими структурами нейрона, проводящими возбуждение (нервные импульсы), являются: А) тонофибриллы Б) протофибриллы В) миофибриллы Г) нейрофибриллы 26

27 31. Нервные импульсы от тела нейрона к другим нейронам или эффекторам идут по: А) аксону Б) одному дендриту В) всем дендритам Г) аксону и дендриту одновременно 32. По направлению к телу нейрона импульсы проводятся по: А) одному из нескольких дендритов Б) всем дендритам В) аксону Г) аксону и дендриту одновременно 33. Псевдоуниполярные нейроны это нейроны, имеющие: А) два отростка Б) три отростка В) четыре и более отростка Г) один общий вырост от тела клетки 34. Афферентные нейроны это нейроны: А) двигательные Б) чувствительные В) промежуточные Г) вегетативные 35. Эфферентные нейроны это нейроны: А) двигательные Б) чувствительные В) промежуточные Г) тормозные клетки К. Реншоу 36. Глиальные макрофаги осуществляют функцию: А) опорную Б) секреторную В) трофическую Г) фагоцитарную 37. Выстилают спинномозговой канал и желудочки головного мозга клетки нейроглии: А) эпендимоциты Б) астроциты В) олигодендроциты Г) макрофаги 38. Образуют опорный аппарат ЦНС клетки нейроглии: А) эпендимоциты Б) астроциты В) олигодендроциты Г) макрофаги 27

28 39. Окружают тела нейронов, находятся в составе оболочек нервных волокон клетки нейроглии: А) эпендимоциты Б) астроциты В) олигодендроциты Г) макрофаги 40. Основным функциональным свойством нервных волокон является: А) проводимость Б) рефрактерность В) лабильность Г) утомляемость Задание 6. Решите кроссворды: А) Строение клетки. Органоиды клетки. 1. Название белка, образующего центриоли. 2. Скопления веществ, которые клетка использует для своих нужд, или выделяет во внешнюю среду. 3. Эндоплазматическая сеть с множеством рибосом. 4. Органоиды, необходимые клетке для синтеза белка. 5. Вещества, хранящиеся в лизосомах. 6. Опорная система клетки. 7. Составная часть опорной системы клетки. 8. Эндоплазматическая сеть без рибосом. 9. Аппарат (комплекс), представляющий собой систему внутриклеточных цистерн. 10. Внутренняя полужидкая среда клетки. 11. Маленькие мембранные пузырьки с ферментами. 12. Органоиды, представленные расположенными перпендикулярно друг другу цилиндрами. 13. Клеточный центр. 28

29 Б) Строение и химический состав клетки По горизонтали. 1. Биологические катализаторы течения химических реакций. 3. Наука, изучающая строение и функции клеток. 4. Основные вещества клетки, состоящие из аминокислот. 5. Составная часть клетки. 6. Источники энергии для жизнедеятельности клеток. 7. Органоиды, которые участвуют в образовании белков. 8. Кислоты, образующиеся в клеточном ядре. 9.Органоиды, в которых образуется вещество, богатое энергией. 10. Вязкое полужидкое вещество клетки. По вертикали. 2. Прибор для изучения строения клетки. В) Типы тканей и их свойства По горизонтали. 1. Производное кожного эпителия. 3. Вид соединительной ткани, имеющей межклеточное вещество в виде волокон. 4. Эпителий, образующий железы. 5. Тип ткани, в которой сильно развито межклеточное вещество. 6. Вид соединительной ткани, переносящей различные вещества и газы. 7. Тип ткани, в которой клетки плотно прилегают друг к другу. 8. Структурная единица нервной ткани. 9. Эпителий, имеющий несколько слоев. 10. Выросты клеток мерцательного эпителия. 11. Вид соединительной ткани, имеющей плотное межклеточное вещество. По вертикали. 2. Наука о тканях. 29

30 Эталон ответов Задание 1. А) 1. Оболочка; 2.- Лизосомы; 3. Комплекс Гольджи; 4. Вакуоль; 5. Ядрышко; 6. Ядро; 7. Эндоплазматическая сеть; 8. Центриоль; 9. Митохондрия; 10. Рибосома. Б) 1. железистый эпителий; 2.- Нервная ткань; 3. Хрящевая ткань; 4. кубический эпителий; 5. Цилиндрический эпителий; 6. Плоский многослойный эпителий; 7. Костная ткань; 8. Жировая ткань; 9. Плотная оформленная волокнистая ткань; 10. Поперечнополосатая мышечная ткань; 11. Гладкая мышечная ткань. В) 1. Дендриты; 2. Тело; 3. Аксон. Г) 1. Униполярный нейрон; 2. Биполярный нейрон; 3. Мсультиполярный нейрон. Задание Задание Внутренних 2. Кардиомиоцитов 3. Волокнами 4. Возбудимость и сократимость 5. Дендритами 6. Аксонами 7. Книполярными 8. Мультиполярными 9. Синапсы 10. Возбудимость и проводимость. Задание Б 9. Б 17. А 25. Г 33. Г 2. А 10. Б 18. В 26. Б 34. Б 3. Б 11. А 19. В 27. В 35. А 4. В 12. Г 20. В 28. А 36. Г 5. Г 13. Б 21. В 29. Б 37. А 6. В 14. В 22. Б 30. Г 38. Б 7. А 15. Б 23. А 31. А 39. В 8. Г 16. Г 24. В 32. Б 40. А 30

31 Задание 6. А) 1. Тубулин 2. Включения, веретено 3. Шерховатая 4. Рибосомы 5. Ферменты 6. Цитоскелет 7. Микротрубочки 8. Гладкая 9. Гольджи 10. Цитоплазма 11. Лизосомы 12. Центриоли 13. Центросома. Б) По горизонтали. 1. Ферменты. 3. Цитология. 4. Белки. 5. Ядро. 6. Углеводы. 7. Рибосомы. 8. Нуклеиновые. 9. Митохондрии. 10. Цитоплазма. По вертикали. 2. Микроскоп. В) По горизонтали. 1. Ногти. 3. Волокнистая. 4. Железистый. 5. Соединительная. 6. Кровь. 7. Эпителиальная. 8. Нейрон. 9. Многослойный. 10. Реснички. 11. Хрящевая. По вертикали. 2. Гистология. 31

32 Литература. 1. Анатомия и физиология человека: учебник/н.и. Федюкович, И.К. Гайнутдинов. Изд. 17-е, доп. и перераб. Ростов н/д: Феникс, Горелова Л.В., Таюрская И.М. анатомия в схемах и таблицах. Ростов н.: Феникс, Жилов Ю.Д., Назарова Е.Н. Физиология человека: учебнометодическое пособие к практическим занятиям по физиологии человека с кратким теоретическим курсом. М.: САНВИТТА, Интернет: 5. Интернет: 6. Интернет: 7. Интернет: 8. Сапин М.Р., Билич Г.Л. Анатомия человека: Учеб. Для студентов высш. Учеб. Заведений: в 2 кн. 7-е изд., перераб. и доп. М.: ООО «Издательство Оникс: ООО «Издательство «Мир и образование», Сапин М.Р., Швецов Э.В. Анатомия человека: Учебник. Среднее профессиональное образование. М.: Феникс, Яковлев В.Н., Эсауленко И.Э., Сергиенко А.В. Нормальная физиология в 3 томах для студентов высших уч.заведений, М.: Издательский центр «Академия»,


Предмет и задачи анатомии. Место анатомии среди других наук. Общее представление об устройс Тема: Предмет и задачи анатомии. Место анатомии среди других наук. Общее представление об устройстве человеческого

Ткань система клеток и внеклеточных структур, сходных по происхождению, строению, расположению и функциям ЭПИТЕЛИАЛЬНАЯ ТКАНЬ. Эпителии покрывают поверхность тела, серозные полости тела, внутреннюю и

Ткани человеческого организма Ткань эволюционно сложившаяся совокупность клеток и межклеточного вещества, обладающая общностью строения, развития и выполняющая определенные функции. В человеческом организме

На дом: 3 Глава I. Организм человека и его строение Тема: Ткани. Типы тканей и их свойства Задачи: Изучить четыре типа тканей, особенности и функции Пименов А.В. Ткани. Эпителиальная ткань Ткань это группа

Аннотация к рабочей программе дисциплины Автор: Т.Я. Вишневская, профессор Наименование дисциплины: Б1.Б.21 Цитология и гистология Цель освоения дисциплины: сформировать мировоззрение биолога, его умение

Учитель биологии МБОУ «Гатчинская СОШ 9 с углублённым изучением отдельных предметов» Гуськова С.А. 2017 Клеточный уровень организации жизни 1 Тела всех живых организмов состоят из клеток. Тела большинства

Промежуточная аттестация по биологии за курс 8 класса демоверсия вариант 1 Часть 1. Выбери один верный ответ 1. Основная функция митохондрий - это синтез: 1) АТФ 2) белка 3) углеводов 4) клетчатки 2.Ткань,

Биология Программа подготовки для поступающих к вступительным испытаниям 2015-2016 учебного года Москва, 2014 БИОЛОГИЯ Программа вступительных испытаний по биологии разработана для абитуриентов психологического

Гистология (и немного анатомии) приготовление гистологического препарата красители классификация животных тканей гистологическое строение органов человека Этапы приготовления гистологического препарата:

1 Организм человека (установление соответствия) Ответами к заданиям являются слово, словосочетание, число или последовательность слов, чисел. Запишите ответ без пробелов, запятых и других дополнительных

В-2 Вариант 2 Ответы 8 класс Часть А При выполнении заданий А1 А15 выберите один правильный ответ. А1. Процессы жизнедеятельности, происходящие в организме человека, изучает: 1) анатомия; 2) физиология;

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Морфологии, физиологии и патологии» Методические рекомендации

Лекция 2 Биоморфологические закономерности строения и развития организма 1. Основные проявления жизни и системы их обеспечивающие 2. Уровни структурной организации (клетка, ткань, орган, система и аппарат

СПИСОК УЧЕБНЫХ ЗАДАНИЙ для рабочего альбома по гистологии, цитологии и эмбриологии Факультет: лечебный Семестр: весенний Учебные задания включают рисунки гистологических и цитологических микропрепаратов,

Гистология. Эпителиальная ткань Лекция 1 Гистология (от греч. histos ткань, logos учение) наука о строении, развитии и жизнедеятельности тканей животных организмов. Общая гистология часть гистологии изучающая

Лабораторная работа: «Изучение тканей организма человека на готовых микропрепаратах» Цель: познакомиться с основными типами тканей; научиться определять типы тканей по их характерным признакам. Ход работы:

Муниципальное общеобразовательное учреждение средняя общеобразовательная школа 1 Проект по биологии на тему: «Клетка» Выполнила: Кизка Е. А. Проверили: Дронова А. О. Калуцкая Н.Н. Хабаровск 2008 История

ЦИТОЛОГИЯ Из перечисленных вариантов выбрать один, наиболее правильный ответ: 001.Первичной формой организации протоплазмы является 1)митохондрия 2)клетка 3)рибосома 4)коацерват 002.ГЭРЛ-системой является

БИБЛИОТЕКА УЧИТЕЛЯ БИОЛОГИИ К.В. МАРИНОВА Контроль знаний по биологии. Раздел «Человек и его здоровье» 8 класс ГУМАНИТАРНЫЙ ИЗДАТЕЛЬСКИЙ ЦЕНТР МОСКВА, 2004 УДК 373.167.1:611/612*08 ББК 74.262.88 М26 М26

БЛОК 5 Человек и его здоровье. 1. Назовите части малого круга кровообращения: 1) левый желудочек 2) правый желудочек 3) правое предсердие 4) левое предсердие 5) кровеносные сосуды органов брюшной полости

А Анатомия и физиология животных Рабочая тетрадь Челябинск 2015 Тема 1. Общие представления о животном организме. Задание 1. Дайте определение понятий. Анатомия Физиология Задание 2. Сформулируйте методы

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения 1. Кафедра Физики, биологии и инженерных технологий 2. Направление подготовки 06.03.01

Демоверсия итоговой контрольной работы по биологии за курс 8 класса В тестах представлены разнообразные задания по темам: Часть А содержит 27 заданий с выбором одного верного ответа из четырех базового

Материал для подготовки 10.2кл. Биология П3 Строение эукариотической клетки". Задание 1 Ферменты, расщепляющие жиры, белки, углеводы синтезируются: на лизосомах на рибосомах в комплексе Гольджи 4) в вакуолях

Итоговая контрольная работа по биологиидля 8 класса 1 вариант 1. К какой группе тканей относится кровь и лимфа?) соединительная;) нервная;) мышечная;) эпителиальная. 2. Чем образовано серое вещество

Фонд оценочных средств для проведения промежуточной аттестации обучащихся по дисциплине (модул): Б1.Б.24 Биология клетки: гистология Общие сведения 1. 2. 3. 4. Кафедра Направление подготовки Дисциплина

ТЕМА «МИТОЗ» 1. Сущность митоза состоит в образовании двух дочерних клеток с 1) одинаковым набором хромосом, равным материнской клетке 2) уменьшенным вдвое набором хромосом 3) увеличенным вдвое набором

В-1 Итоговый контроль знаний по биологии в форме ЕГЭ 8 класс 1 вариант При выполнении заданий А1 А15 выберите один правильный ответ. Часть А А1. Особенность строения клеток эпителиальной ткани: 1) Клетки

Тестовая работа для прохождения промежуточной аттестации по биологии (за 1 полугодие) для 8 класса. Часть А. Выберите один правильный ответ. А1.Физиология изучает: 1) функции организма и его органов 2)

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА 45 Г. ЛИПЕЦКА ОТКРЫТЫЙ УРОК В 9А КЛАССЕ ПО БИОЛОГИИ НА ТЕМУ: «ДЕЛЕНИЕ КЛЕТКИ» УЧИТЕЛЬ БИОЛОГИИ ИОСИФОВА НАТАЛЬЯ АНАТОЛЬЕВНА.

Учебный год 2015-2016 Полугодие 1 Предмет биология Класс 8 Темы Науки, изучающие организм человека Систематическое положение человека Структура тела человека Строение клетки Термины, понятия Анатомия наука

План лекции 1. Костная ткань как ткань внутренней среды организма. 2. Структурная организация костной ткани. 2.1. Строение и функциональная роль клеток костной ткани. 2.2. Строение и функциональная роль

I четверть Основной учебник: А.Г. Драгомилов, Р.Д. Маш. Биология: 8 класс: Учебник для учащихся общеобразовательных учреждений. М.: Вентана-Граф, 2010. 1. Выделите неорганические соединения клетки: а)

Спецификация диагностической работы по биологии для учащихся 8-х классов общеобразовательных учреждений г. Москвы 1. Назначение диагностической работы Диагностическая работа проводится 15 марта 2018 г.

428 ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ Введение... 3 Глава 1. Основные этапы индивидуального развития человека... 5 Пренатальный онтогенез... 6 Постнатальный онтогенез... 14 Глава 2. Cтроение тела человека... 22 Клетка:

СКЕЛЕТНЫЕ ТКАНИ Выбрать один наиболее правильный ответ 001. Для пластинчатой костной ткани не характерно то, что 1) образует компактное и губчатое вещество костей скелета 2) формируется путем образования

Занятие 8 Тема: Эпителиальная ткань Задачи занятия: 1. Определить морфологические особенности эпителиальной ткани. 2. Сопоставить микроскопические особенности различных видов эпителиальных тканей с выполняемой

ТЕМА: ИТОГОВОЕ ЗАНЯТИЕ ПО ГИСТОЛОГИЧЕСКОЙ И МИКРОСКОПИЧЕСКОЙ ТЕХНИКЕ, ЦИТОЛОГИИ, ЭМБРИОЛОГИИ И ОБЩЕЙ ГИСТОЛОГИИ I. ВОПРОСЫ ДЛЯ 1 ИТОГОВОГО ЗАНЯТИЯ 1. Основные рубежи истории развития гистологии. 2. История

Теоретические вопросы к экзамену І. Цитология 1. Морфофункциональная характеристика строения плазмолемы (элементарная биологическая мембрана, гликокаликс, подмембранный слой). Химический состав и основные

Итоговое тестирование по общей гистологии Первый семестр САМАРА Автор: Павел Борискин Описание: Тестирование по теоретической части и практическому умению разделов "Общая гистология" первый семестр, для

Тестирование по теме «Клетка»_тренировочные тесты_9 класс 1. Какие органоиды клетки можно увидеть в школьный световой микроскоп? 1) лизосомы 2) рибосомы 3) клеточный центр 4) хлоропласты 2. Сходство строения

Банк заданий. Погружение 1 9 класс 1. Какое из положений клеточной теории ввел в науку Р. Вирхов? 1) все организмы состоят из клеток 2) всякая клетка происходит от другой клетки 3) каждая клетка есть некое

ЭПИТЕЛИАЛЬНЫЕ ТКАНИ Выберите несколько правильных вариантов ответа 001. Клетки эпителиальных тканей могут обладать специальными органеллами, это 1)микроворсинки 2)тонофибриллы 3)миофибриллы 4)нейрофибриллы

1. К макроэлементам относятся: БЛОК 2 Клетка как биологическая система. 1) кислород, углерод, водород, азот 2) кислород, железо, золото 3) углерод, водород, бор 4) селен, азот, кислород 1) 2. Органоид,

Входная контрольная работа по биологии 9 класс 1 вариант 1. Кровь относится к типу тканей: А) соединительная Б) нервная В) эпителиальная Г) мышечная 2. К мышцам таза относятся А) ягодичные Б) икроножные

Ñ. Þ. Êèñåëåâ ÀÍÀÒÎÌÈß ÖÅÍÒÐÀËÜÍÎÉ ÍÅÐÂÍÎÉ ÑÈÑÒÅÌÛ Ó ÅÁÍÎÅ ÏÎÑÎÁÈÅ ÄËß ÂÓÇÎÂ Ðåêîìåíäîâàíî ìåòîäè åñêèì ñîâåòîì ÓðÔÓ â êà åñòâå ó åáíî-ìåòîäè åñêîãî ïîñîáèÿ äëÿ ñòóäåíòîâ, îáó àþùèõñÿ ïî ïðîãðàììàì áàêàëàâðèàòà

Вопросы для подготовки к промежуточной аттестации по биологии (самообразование) за курс основной школы в 2014-2015 уч.году Рекомендуемая литература: Учебник «Биология» 8 класс под редакцией А.Д.Драгомилова,

Государственный Университет Медицины и Фармации им. Николая Тестемицану Аналитическая программа для вступительных экзаменов. Биология человека Цель биологических наук это изучение жизни и живых организмов,

2. НЕРВНАЯ СИСТЕМА 20 1. Из чего построена нервная ткань? а) из нейронов; б) из эпителиальных клеток; в) из эритроцитов; г) из межклеточного вещества. 2. Где наиболее полно описываются основные свойства

Описание контрольных измерительных материалов для проведения промежуточной аттестации 8 класс 1. Документы, определяющие содержание проверочной работы Содержание и структура проверочной работы определяются

Часть1. Вам надо выбрать один правильный ответ и занести его в матрицу. 1. Какой из перечисленных ниже тканей представлен сетчатый слой дермы? a) Студенистая соединительная ткань; b) Ретикулярная соединительная

Тест по биологии Строение клетки 9 класс 1. Биологическую мембрану образуют 1) липиды и белки 2) белки и углеводы 3) нуклеиновые кислоты и белки 4) липиды и углеводы 2. Полувязкая внутренняя среда клетки

III семестр Тематический план по учебной дисциплине: «Анатомия и физиология человека» Раздел 1. Анатомия и физиология как науки. Тема 1.1.Человек предмет изучения анатомии и физиологии Раздел 2. Отдельные

Итоговый тест по анатомии с БМ стоматология ортопедическая. Вариант 2. 1.Особенности эпителиальной ткани 1) отсутствие межклеточного вещества 2) обилие межклеточного вещества 3) обилие волокон 4) отсутствие

Контрольная работа за первое полугодие в 10 классе. Вариант 1. ЧАСТЬ 1 А1. К прокариотам относятся 1) растения 2) животные 3) грибы 4) бактерии и цианобактерии А2.Принцип комплементарности лежит в основе

1 Клетка, её жизненный цикл (множественный выбор) Ответами к заданиям являются слово, словосочетание, число или последовательность слов, чисел. Запишите ответ без пробелов, запятых и других дополнительных

Наружные покровы человека это кожа и её производные (ногти и волосы), а также слизистые оболочки. Кожа человека: площадь 1,5 2 м 2 ; масса составляет около 5% от массы тела; толщина колеблется от 0,5 мм

Государственное бюджетное образовательное учреждение среднего профессионального образования "Кущевский медицинский колледж" министерства здравоохранения Краснодарского края Задания в тестовой форме по

Пищеварительная система человека Значение пищеварения Пищеварение процесс физической и химической обработки пищи в пищеварительном тракте, начальный этап обмена веществ; благодаря пищеварению человек получает

Вопросы и задания 1. В чём особенность организации вегетативной нервной системы? 2. Какие особенности строения характерны для парасимпатического отдела вегетативной нервной системы в отличие от симпатического?

Общее знакомство с организмом человека 1. Что такое ткань (определение)? 2. Какие виды тканей различают в организме человека? 3. Перечислите разновидности эпителиальной ткани. 4. Перечислите разновидности

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ПО ПРЕДМЕТУ:

БИОЛОГИЯ

ОСНОВЫ ЦИТОЛОГИИ

УЧЕНИК 9 «Б» КЛАССА

ВОЛНА ВЛАДИМИР

Введение

Цитология (греч. «цитос» - клетка, «логос» -наука)-это наука о клетке. Предмет цитологии-клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли. Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды.

Цитология - одна из относительно молодых биологических наук, ее возраст около 100 лет. Возраст же термина «клетка» насчитывает свыше 300 лет. Впервые название «клетка» в середине 17 века применил английский физик и ботаник Роберт Гук. Рассматривая тонкий срез пробки с помощью сконструированного им микроскопа, Гук увидел, что пробка состоит из ячеек, похожих на пчелиные соты и назвал их клетками.

1. Клеточная теория

В середине 19 века на основе уже многочисленных знаниях о клетке Т. Шванн сформулировал клеточную теорию (1838). Он обобщил знания о клетке и показал, что клетка представляет основную единицу строения всех живых организмов, что клетки животных и растений сходны по своему строению. Эти положения являлись важнейшими доказательствами единства происхождения всех живых организмов, единства всего животного мира. Шванн внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.

Клеточная теория- одно из выдающихся обобщений биологии, давшее основу для материалистического подхода к пониманию жизни, к раскрытию эволюционных связей между организмами. Клеточную теорию высоко оценил Ф. Энгельс, сравнив ее появление с открытием закона сохранения энергии и учением Чарльза Дарвина об эволюции органического мира.

Было открыто деление клеток и сформулировано положение о том, что каждая новая клетка происходит от такой же исходной клетки путем ее деления (Рудольф Вихров, 1858). Академик Российской Академии наук Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки и этой клеткой является зигота. Открытие Бэра показало, что клетка - не только единица строения, но и единица развития всех живых организмов.

Современная клеточная теория включает в себя следующие положения:

v Клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого;

v Клетки всех одноклеточных и многоклеточных организмов сходны по своему строению, химическому составу, основным проявлением жизнедеятельности и обмену веществ;

v Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки;

v В сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

Изучение клеток разнообразных одноклеточных и многоклеточных организмов с помощью микроскопов показало, что по своему строению они разделяются на две группы. Одну группу составляют бактерии и сине-зеленые водоросли. Эти организмы имеют наиболее простое строение клеток. Их называют доядерными (прокариотическими), так как у них нет оформленного ядра. Другую группу составляют все остальные организмы: от одноклеточных зеленых водорослей и простейших до высших цветковых растений, млекопитающих, в том числе и человека. Они имеют сложно устроенные клетки, которые называются ядерными (эукариотическими). Эти клетки имеют ядро и органоиды, выполняющие специфические функции.

2. Химический состав клетки

Одним из основных признаков живых организмов является единство их элементарного химического состава. Независимо от того, к какому царству, типу или классу принадлежит то или иное живое существо, в состав его тела входят одни и те же, так называемые универсальные химические элементы. Сходство в химическом составе разных клеток свидетельствует о единстве их происхождения.

В зависимости от содержания все химические элементы, входящие в состав живой природы, разделяют на несколько групп.

Макроэлементы. I группа. Главными компонентами всех органических соединений, выполняющих биологические функции, являются кислород, углерод, водород и азот. Все углеводы и липиды содержат водород, углерод и кислород, а в состав белков и нуклеиновых кислот, кроме этих компонентов, входит азот. На долю этих четырёх элементов приходится 98% от массы живых клеток.

II группа. К группе макроэлементов относятся также фосфор, сера, калий, магний, натрий, кальций, железо и хлор. Эти химические элементы являются обязательными компонентами всех живых организмов. Содержание каждого из них в клетке составляет от десятых до сотых долей процента от общей массы.

Натрий, калий и хлор обеспечивают возникновение и проведение электрических импульсов в нервной ткани. Поддержание нормального сердечного ритма зависит от концентрации в организме натрия, калия и кальция. Железо участвует в биосинтезе хлорофилла, входит в состав гемоглобина (белка-переносчика кислорода в крови) и миоглобина (белка, содержащего запас кислорода в мышцах). Магний в клетках растений входит в состав хлорофилла, а в животном организме участвует в формировании ферментов, необходимых для нормального функционирования мышечной, нервной и костной тканей. В состав белков часто входит сера, а все нуклеиновые кислоты содержат фосфор. Фосфор также является компонентом всех мембранных структур.

Среди обеих групп макроэлементов кислород, углерод, водород, азот, фосфор и сера объединяются в группу биоэлементов, или органогенов, на основании того, что они составляют основу большинства органических молекул.

Микроэлементы. Существует большая группа химических элементов, которые содержаться в организмах в очень низких концентрациях. Это алюминий, медь, марганец, цинк, молибден, кобальт, никель, йод, селен, бром, фтор, бор, и многие другие. На долю каждого из них приходится не более тысячных долей процента, а общий вклад этих элементов в массу клетки - около 0,02%.

Кобальт входит в состав витамина B 12 и принимает участие в синтезе гемоглобина, его недостаток приводит к анемии.

Молибден в составе ферментов участвует в фиксации азота у бактерий и обеспечивает работу устьичного аппарата у растений

Медь является компонентом фермента, участвующего в синтезе меланина (пигмента кожи), влияет на рост и размножение растений, на процессы кроветворения у животных организмов.

Йод у всех позвоночных животных входит в состав гормона щитовидной железы - тироксина.

Бор влияет на ростовые процессы у растений, его недостаток приводит к отмиранию верхушечных почек, цветков и завязей.

Цинк действует на рост животных и растений, а так же входит в состав гормона поджелудочной железы - инсулина.

Нехватка селена приводит к возникновению у человека и животных раковых заболеваний.

Микроэлементы широко используются в современном сельском хозяйстве в виде микроудобрений для повышения урожайности культур и в качестве добавок к кормам для увеличения продуктивности животных. Применяются микроэлементы и в медицине.

Ультрамикроэлементы. Существует группа химических элементов, которые содержатся в организмах следовых, т. е. ничтожно малых концентрациях. К ним относят золото, бериллий, серебро и другие элементы. Физиологическая роль этих компонентов в живых организмах пока окончательно не установлена.

3. Неорганические вещества клетки

Вода. Молекула воды - это диполь, т. е. на одной стороне молекулы сосредоточен положительный заряд, а на другом конце - отрицательный. Вода имеет свойство универсального растворителя. Любые вещества, имеющие заряженные группы, растворяются в воде, такие соединения называют гидрофильными. Однако есть соединения, которые в воде растворяются очень плохо или вовсе не растворяются. Такие вещества называют гидрофобными, к ним относятся жиры (липиды), жироподобные вещества (липоиды), полисахариды и некоторые белки.

Соли. Кости нашего скелета состоят из фосфатов калия с магния. Раковины моллюсков формируются из карбоната кальция.

4. Органические вещества. Липиды

Органические вещества - это сложные углеродсодержащие соединения. Среди низкомолекулярных органических соединений, входящих в состав живых организмов, важную роль играют липиды, к которым относятся жиры, воски, жироподобные вещества. Это гидрофобные соединения, не растворимые в воде. Общее содержание липидов в клетке колеблется в пределах 5 -15% от массы сухого вещества.

Жиры являются источником энергии, служат источником метаболической воды. В основном откладываются в клетках жировой ткани. Эта ткань служит для предотвращения потери тепла тела и выполняет защитную функцию.

5. Углеводы (сахара)

Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5% сухой массы, а в некоторых растительных их содержание достигает 90%. Углеводы подразделяются на три основных класса: моносахариды, полисахариды и дисахариды.

Моносахариды рибоза и дизоксирибоза входят в состав нуклеиновых кислот. Глюкоза присутствует в клетках всех организмов и является одним из источников энергии для животных.

Дисахариды. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространенный в природе дисахарид - сахароза. Именно она и есть тот самый сахар, который мы покупаем в магазине.

Полисахариды - сложные углеводы, состоящие из простых сахаров, выполняют в организме несколько важных функций. Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии.

Одним из наиболее важных органических соединений в живой природе являются белки. В каждой живой клетке присутствует одновременно более тысячи видов белковых молекул. О первостепенной роли этих сложных веществ догадывались ещё в начале XX в., именно поэтому им дали название протеины (от греч. Protos - первый). В различных клетках на долю белков приходиться от 50 до 80% сухой массы.

Структуры белка:

v Первичная структура белка. Последовательность аминокислот в полипептидной цепи.

v Вторичная структура белка. Путём образования водородных связей между остатками карбоксильных и аминогрупп разных аминокислот белковая молекула принимает вид спирали или складчатого слоя - “гармошки”.

v Третичная структура. Образуется благодаря взаимодействию радикалов, в частности радикалов аминокислоты цистеина, которые содержат серу. Атомы серы двух аминокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или S - S, связи.

v Четвертичная структура. Она представляет собой функциональное объединение нескольких молекул белка, обладающих третичной структурной организацией. Пример такого сложного белка - гемоглобин.

Строение белков. Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала (R). Соединяясь, молекулы аминокислот образуют так называемые пептидные связи.

Функции белков. Огромное разнообразие белковых молекул подразумевает столь же широкое разнообразие их функций.

v Белки - ферменты служат катализаторами химических реакций. Они обеспечивают слаженную работу биохимического ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.

v Пластическая (строительная) функция. Белки участвуют в образовании всех мембран и органоидов клетки. Коллаген входит в состав межклеточного вещества соединительной и костной ткани. Основной компонент рогов, перьев, волос - кератин.

v Транспортные белки связывают и переносят различные вещества и внутри клетки, и по всему организму.

v Белки - гормоны обеспечивают регуляторную функцию.

v Защитная функция. При попадании в организм человека чужеродных белков, вирусов или бактерий на защиту встают иммуноглобулины - защитные белки.

v Энергетическая функция. При нехватке пищи в организме животных начинается активный распад белков до конечных продуктов.

Денатурация и ренатурация белков. Денатурация - это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жестоких условиях - и первичной структуры. В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжёлых металлов и органических растворителей.

Денатурация может быть обратимой и необратимой, частичной и полной. Иногда, если воздействие денатурирующих факторов оказалось не слишком сильным и разрушение первичной структуры молекулы не произошло, при наступлении благоприятных условий денатурированный белок может вновь восстановить свою трёхмерную форму. Этот процесс называется ренатурацией, и он убедительно доказывает зависимость третичной структуры белка от последовательности аминокислотных остатков, то есть от его первичной структуры.

7. Органические вещества. Нуклеиновые кислоты

В 1868 г. Швейцарский врач и биохимик Иоганн Фридрих Мишер выделил из ядер погибших лейкоцитов вещество, обладающее кислыми свойствами. Учёный назвал это вещество нуклеином (от лат. Nucleus - ядро), считая, что оно содержится только в ядрах клеток. Позднее эти органические соединения были обнаружены также в цитоплазме, митохондриях, пластидах, но данное им название - нуклеиновые кислоты - сохранилось.

Дезоксирибонуклеиновая кислота (ДНК). ДНК - биологический полимер, состоящий из двух полинуклеотидных цепей, соединённых друг с другом. ДНК - полимер с очень большой молекулярной массой. В одну молекулу могут входить 10 8 и более нуклеотидов. Мономеры, которые входят в состав ДНК представляют собой сложные органические соединения, включающие азотистые основания: аденин (А) или тимин (Т), цитозин (Ц) или гуанин (Г), пятиатомный сахар - пентозу - дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов. ДНК выполняет важнейшие функции, необходимые как для поддержания, так и для воспроизведения жизни. Первая функция - это хранение наследственной информации, которая заключена в последовательности нуклеотидов одной из её цепей. Вторая функция ДНК - передача наследственной информации из поколения в поколение.

Рибонуклеиновая кислота - РНК. РНК - так же, как ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трёх нуклеотидов те же самые, что входят в состав ДНК (аденин, гуанин, цитозин), четвёртое - урацил - присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода: они включают другую пентозу - рибозу. РНК переносят информацию о последовательности аминокислот в белках, то есть о структуре белков, от хромосом к месту их синтеза, и участвует в синтезе белков.

Существует несколько видов одноцепочечных РНК.

v Рибосомная РНК. Составляет большую часть цитоплазмы (от 80 до 90%). Молекулы р-РНК относительно невелики и состоят из 3 - 5 тыс. нуклеотидов. Содержится в рибосомах, участвует в поддержании структуры рибосомы.

v Транспортная РНК. т-РНК включает 76 - 85 нуклеотидов и выполняет функцию транспортировки аминокислот к месту синтеза белка.

v Информационная РНК. и-РНК передаёт информацию о структуре белка с молекулы ДНК.

8. Эукариотическая клетка. Цитоплазма. Органоиды

В каждой клетке можно выделить три основные части: наружная клеточная мембрана, которая отделяет содержимое клетки от внешней среды; ядро - обязательный компонент эукариотических клеток; и цитоплазма - часть клетки, заключенная между наружной мембраной и ядром.

Наружная клеточная мембрана. Первая гипотеза строения мембраны была выдвинута еще в 1935 году, а в 1959 Вильям Робетсон сформулировал гипотезу элементарной мембраны. Наружная клеточная мембрана имеет универсальное строение, типичное для всех клеточных мембран. Положение этой мембраны на границе клетки и окружающей среды определяет ее основные функции. Клеточная мембрана обеспечивает взаимодействие клетки с окружающей средой и с другими клетками.

Цитоплазма. Основой цитоплазмы клетки является цитоплазматический сок.

Эндоплазматическая сеть. Совокупность вакуолей, каналов, трубочек образует внутри цитоплазмы мембранную сеть, объединенную в единое целое с наружной мембранной ядерной оболочкой.

Аппарат Гольджи. Формирует лизосомы и обеспечивает выведение необходимых белков за пределы клетки путем экзоцитоза.

Лизосомы. Участвуют во внутриклеточном пищеварении, образуя пищеварительные вакуоли, а также уничтожают отслужившие органоиды и даже целые клетки.

Митохондрии. Имеют собственные рибосомы и ДНК, поэтому способны самостоятельно синтезировать белки.

Пластиды. Двухмембранные органоиды растительных клеток, которые размножаются путем деления. Также имеют собственный генетический аппарат, рибосомы и синтезируют белки.

Рибосомы. Субмикроскопические немембранные органоиды, функция которых - синтез белков, благодаря чему они являются обязательными органоидами в клетках всех живых организмов.

Клеточный центр. Органоид немембранного строения, присутствующий в клетках животных, грибов и низших растений.

Вакуоль. Это крупный мембранный пузырек, заполненный клеточным соком. Накапливает запасные питательные вещества и регулирует водно - солевой обмен, контролируя поступление воды в клетку из клетки.

9. Клеточное ядро

Клеточное ядро хранит наследственную информацию и управляет процессами внутриклеточного метаболизма, обеспечивая нормальную жизнедеятельность клетки и выполнение ею своих функций. Как правило, ядро имеет свою сферическую форму. Ядро и цитоплазма - это взаимосвязанные компоненты клетки, которые не могут существовать друг без друга. В эукариотических организмах существуют клетки, не имеющие ядер, но срок их жизни недолог.

Ядерная оболочка. Отделяет содержимое ядра от цитоплазмы клетки и состоит из двух мембран, имеющих типичное для всех мембран строение.

Ядерный сок. Раствор белков, нуклеиновых кислот, углеводов, в котором происходят все внутриядерные процессы.

Ядрышко. Это место синтеза рибосомальной РНК и сборки отдельных субъединиц рибосом.

Хроматином называют глыбки, гранулы и естественные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличающиеся по форме от ядрышка.

10. Прокариотические клетки

Особенности строения прокариотических клеток (бактерии и сине - зелёные водоросли). В клетках прокариот, в отличие от эукариот, нет ряда органоидов: митохондрий, эндоплазматической сети, аппарата Гольджи. У бактерий и сине - зелёных водорослей отсутствует ядро, хромосомы не отделены от цитоплазмы ядерной оболочкой, а свободно располагаются в цитоплазме.

11. Неклеточные формы жизни. Вирусы

В отличие от клеточных организмов у вирусов отсутствует собственная система, синтезирующая белки. Вирусы вносят в клетку только свою генетическую информацию.

Химический состав вирусов. Просто организованные вирусы представляют собой нуклеотиды, то есть состоят из нуклеиновой кислоты (ДНК и РНК) и несколько белков, образующих оболочку вокруг нуклеиновой кислоты. Белковая оболочка носит название капсид.

Происхождение вирусов. Вирусы представляют собой автономные генетические структуры, неспособные, однако, развиваться вне клетки. Полагают, что вирусы и бактериофаги - обособившиеся вместе с клеточными формами жизни. цитология шванн клеточная теория клетка белок

Список литературы

1. В.Б. Захаров, С.Г. Мамонтов, В.И. Сивоглазов «Биология. Общие закономерности»

2. Д.И. Трайтак «Биология. Справочные материалы.»

3. В.Л. Мамонтов « Биология 11 класс»

4. К.А. Кузьмина, Л. Е Сигарева, Л. А Боброва «Биология клетки»

5. Н.С. Курбатова, Е. А Козлова «Общая биология. Шпаргалки»

6. Ю.С. Ченцов «Введение в клеточную биологию. Общая цитология»

Размещено на Allbest.ru

Подобные документы

    Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

    реферат , добавлен 06.07.2010

    История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.

    реферат , добавлен 27.09.2009

    Клетка–элементарная единица жизни на Земле. Химический состав клетки. Неорганические и органические вещества: вода, минеральные соли, белки, углеводы, кислоты. Клеточная теория строения организмов. Обмен веществ и преобразование энергии в клетке.

    реферат , добавлен 13.12.2007

    Цитология как наука о клетках – структурных и функциональных единицах почти всех живых организмов. Основные положения клеточной теории. Открытие клетки. Основные свойства живых клеток. Открытие закона наследственности. Достижения современной цитологии.

    контрольная работа , добавлен 28.10.2009

    Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.

    презентация , добавлен 13.11.2014

    История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.

    презентация , добавлен 10.09.2015

    Физические и химические свойства, цветные реакции белков. Состав и строение, функции белков в клетке. Уровни структуры белков. Гидролиз белков, их транспортная и защитная роль. Белок как строительный материал клетки, его энергетическая ценность.

    реферат , добавлен 18.06.2010

    Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.

    контрольная работа , добавлен 13.08.2010

    Положения клеточной теории. Особенности электронной микроскопии. Детальная характеристика строения и функции клеток, их связи и отношения в органах и тканях у многоклеточных организмов. Гипотеза тяготения Роберта Гука. Сущность строения клетки эукариот.

    презентация , добавлен 22.04.2015

    Наука о клетках - структурных и функциональных единицах почти всех живых организмов. Создание клеточной теории. Открытие протоплазмы, основные свойства живых клеток. Развитие новых методов в цитологии. Законы генетической непрерывности и наследственности.

Похожие статьи

  • Международный день родного языка

    Без устного общения цивилизованный мир не смог бы существовать и развиваться. У каждого народа есть множество образных выражений, пословиц и поговорок о языке. Русские люди издревле знают, что «слово не воробей, вылетит - не поймаешь»,...

  • Международный день родного языка: истоки, празднование, перспективы Международный день родного языка в школе

    Человек – существо социальное, для сохранения психического здоровья ему необходимо общаться с себе подобными. И не просто общаться, но и понимать друг друга, то есть, разговаривать на одном языке.Язык общения – это один из самых важных...

  • Диагностика креативности

    Креативность можно определить как способность личности создавать что-то нестандартное, новое, ее умение генерировать идеи. Это умение неординарно мыслить и применять это в жизни. Креативные тесты относятся к диагностике способностей, ведь...

  • Методика экспертной оценки невербальной коммуникации (А

    Теоретические основы Социальный интеллект - это интегральная интеллектуальная способность, определяющая успешность общения и социальной адаптации, которая объединяет и регулирует познавательные процессы, связанные с отражением...

  • Холостяк Максим и Маша — как сложилась судьба героев после проекта?

    На самый романтичный телепроект страны мечтает попасть каждая незамужняя девушка. Здесь и свидания с идеальным мужчиной, сериальные козни, съемки в сказочных, а порой экзотических местах и моментальная слава. Если наладить личную жизнь не...

  • Загадочная смерть Андрея Панина

    Андрей Владимирович Панин. Родился 28 мая 1962 года в Новосибирске - умер 6 марта 2013 года в Москве. Российский актёр театра и кино, кинорежиссёр. Заслуженный артист Российской Федерации (1999). Лауреат Государственной премии России...