Скорость распространения света в различных средах. Почему скорость света константа на пальцах™

Свет – одно из ключевых понятий оптической физики. Свет представляет собой электромагнитное излучение, доступное человеческому глазу.

Долгие десятилетия лучшие умы бились над проблемой определения, с какой скоростью движется свет и чему она равна, а также всех сопутствующих ему расчетов. В 1676 в кругу физиков произошла революция. Датский астроном, по имени Оле Ремер, опроверг утверждение, что свет распространяется по вселенной с неограниченной скоростью.

В 1676 году Оле Ремер определил, что скорость света в вакууме составляет 299792458 м/с .

Для удобства эту цифру принялись округлять. Номиналом, равным 300000 м/c, пользуются до сих пор.

Данное правило в обычных для нас условиях касается всех объектов без исключения, в том числе рентгеновских лучей, световых и гравитационных волн осязаемого для наших глаз спектра.

Современные физики, изучающие оптику, доказали, что значение скорости света имеет несколько характеристик:

  • постоянство;
  • недостижимость;
  • конечность.

Скорость света в разных средах

Следует помнить, что физическая константа напрямую зависит от окружающей её среды, в особенности от показателя преломления. В связи с этим точная величина способна меняться, ведь она обусловлена частотами.

Формула вычисления скорости света записывается как с = 3 * 10^8 м/с .

Скорость света - абсолютная величина скорости распространения электромагнитных волн в вакууме. В физике традиционно обозначается латинской буквой «c» (произносится как [цэ]). Скорость света в вакууме - фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела, а свойства пространства-времени в целом. По современным представлениям, скорость света в вакууме - предельная скорость движения частиц и распространения взаимодействий. Также важен тот факт, что эта величина абсолютна. Это один из постулатов СТО.

В вакууме (пустоте)

В 1977 году удалось вычислить приблизительную скорость света, равную 299 792 458 ± 1,2 м/с рассчитанную исходя из эталонного метра 1960 года. На данный момент считают, что скорость света в вакууме - фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или примерно 1 079 252 848,8 км/ч. Точное значение связано с тем, что с 1983 года за эталон метра принято расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды. Скорость света обозначается буквой c.

Основополагающий для СТО опыт Майкельсона показал, что скорость света в вакууме не зависит ни от скорости движения источника света, ни от скорости движения наблюдателя. В природе со скоростью света распространяются:

собственно видимый свет

другие виды электромагнитного излучения (радиоволны, рентгеновские лучи и др.)

Из специальной теории относительности следует, что ускорение частиц, имеющих массу покоя, до скорости света невозможно, так как это событие нарушило бы фундаментальный принцип причинности. То есть, исключается превышение скорости света сигналом, или движение массы с такой скоростью. Однако теория не исключает движение частиц в пространстве-времени со сверхсветовой скоростью. Гипотетические частицы, движущиеся со сверхсветовой скоростью, называются тахионами. Математически, тахионы легко укладываются в преобразование Лоренца - это частицы с мнимой массой. Чем выше скорость этих частиц, тем меньше энергии они несут, и наоборот, чем ближе их скорость к скорости света, тем больше их энергия - так же, как и энергия обычных частиц, энергия тахионов стремится к бесконечности при приближении к скорости света. Это самое очевидное следствие преобразования Лоренца, не позволяющее частице ускориться до скорости света - сообщить частице бесконечное количество энергии просто невозможно. Следует понимать, что, во-первых, тахионы - это класс частиц, а не один вид частиц, и, во-вторых никакое физическое взаимодействие не может распространяться быстрее скорости света. Из этого следует, что тахионы не нарушают принцип причинности - с обычными частицами они никак не взаимодействуют, а между собой разность их скоростей также не бывает равной скорости света.

Обычные частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой покоя, в отличие от безмассовых фотонов и гравитонов, которые всегда движутся со скоростью света.

В планковских единицах скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

В прозрачной среде

Скорость света в прозрачной среде - скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде (λ=c/ν). Эта скорость обычно (но не обязательно) меньше c. Отношение фазовой скорости света в вакууме к скорости света в среде называется показателем преломления среды. Групповая скорость света в равновесной среде всегда меньше c. Однако в неравновесных средах она может превышать c. При этом, однако, передний фронт импульса все равно двигается со скоростью, не превышающей скорости света в вакууме.

Арман Ипполит Луи Физо на опыте доказал, что движение среды относительно светового луча так же способно влиять на скорость распространения света в этой среде.

Отрицание постулата о максимальности скорости света

В последние годы нередко появляются сообщения о том, что в так называемой квантовой телепортации взаимодействие распространяется быстрее скорости света. Например, 15 августа 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесенные на 18 км в пространстве связанные фотонные состояния, якобы показала, что «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света». Ранее также обсуждался так называемый парадокс Хартмана - сверхсветовая скорость при туннельном эффекте.

Научный анализ значимости этих и подобных результатов показывает, что они принципиально не могут быть использованы для сверхсветовой передачи какого-либо сигнала или перемещения вещества.

История измерений скорости света

Античные учёные, за редким исключением, считали скорость света бесконечной . В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220000 км/сек - неточное, но близкое к истинному. Спустя полвека открытие аберрации позволило подтвердить конечность скорости света и уточнить её оценку.


Весной прошлого года научные и научно-популярные журналы мира сообщили сенсационную новость. Американские физики провели уникальный эксперимент: они сумели понизить скорость света до 17 метров в секунду.

Все знают, что свет распространяется с огромной скоростью - почти 300 тысяч километров в секунду. Точное значение ее величины в вакууме = 299792458 м/с - фундаментальная физическая константа. Согласно теории относительности, это максимально возможная скорость передачи сигнала.

В любой прозрачной среде свет распространяется медленнее. Его скорость v зависит от показателя преломления среды n: v = с/n . Показатель преломления воздуха - 1,0003, воды - 1,33, различных сортов стекла - от 1,5 до 1,8. Одно из самых больших значений показателя преломления имеет алмаз - 2,42. Таким образом, скорость света в обычных веществах уменьшится не более чем в 2,5 раза.

В начале 1999 года группа физиков из Роуландовского института научных исследований при Гарвардском университете (штат Массачусетс, США) и из Стэнфордского университета (штат Калифорния) исследовала макроскопический квантовый эффект - так называемую самоиндуцированную прозрачность, пропуская лазерные импульсы через непрозрачную в обычных условиях среду. Этой средой были атомы натрия, находящиеся в особом состоянии, называемом бозе-эйнштейновским конденсатом. При облучении лазерным импульсом он приобретает оптические свойства, которые уменьшают групповую скорость импульса в 20 миллионов раз по сравнению со скоростью в вакууме. Экспериментаторам удалось довести скорость света до 17 м/с!

Прежде чем описывать сущность этого уникального эксперимента, напомним смысл некоторых физических понятий.

Групповая скорость. При распространении света в среде различают две скорости - фазовую и групповую. Фазовая скорость vф характеризует перемещение фазы идеальной монохроматической волны - бесконечной синусоиды строго одной частоты и определяет направление распространения света. Фазовой скорости в среде соответствует фазовый показатель преломления - тот самый, значения которого измеряются для различных веществ. Фазовый показатель преломления, а следовательно, и фазовая скорость зависят от длины волны. Эта зависимость называется дисперсией; она приводит, в частности, к разложению белого света, проходящего через призму, в спектр.

Но реальная световая волна состоит из набора волн различных частот, группирующихся в некотором спектральном интервале. Такой набор называют группой волн, волновым пакетом или световым импульсом. Эти волны распространяются в среде с различными фазовыми скоростями из-за дисперсии. При этом импульс растягивается, а его форма меняется. Поэтому для описания движения импульса, группы волн как целого, вводят понятие групповой скорости. Оно имеет смысл только в случае узкого спектра и в среде со слабой дисперсией, когда различие фазовых скоростей отдельных составляющих невелико. Для лучшего уяснения ситуации можно привести наглядную аналогию.

Представим себе, что на линии старта выстроились семь спортсменов, одетых в разноцветные майки по цветам спектра: красную, оранжевую, желтую и т. д. По сигналу стартового пистолета они одновременно начинают бег, но "красный" спортсмен бежит быстрее, чем "оранжевый", "оранжевый" - быстрее, чем "желтый", и т. д., так что они растягиваются в цепочку, длина которой непрерывно увеличивается. А теперь представим, что мы смотрим на них сверху с такой высоты, что отдельных бегунов не различаем, а видим просто пестрое пятно. Можно ли говорить о скорости движения этого пятна как целого? Можно, но только в том случае, если оно не очень расплывается, когда разница в скоростях разноцветных бегунов невелика. В противном случае пятно может растянуться на всю длину трассы, и вопрос о его скорости потеряет смысл. Это соответствует сильной дисперсии - большому разбросу скоростей. Если бегунов одеть в майки почти одного цвета, различающиеся лишь оттенками (скажем, от темно-красного до светло-красного), это станет соответствовать случаю узкого спектра. Тогда и скорости бегунов будут различаться ненамного, группа при движении останется достаточно компактной и может быть охарактеризована вполне определенной величиной скорости, которая и называется групповой.

Статистика Бозе-Эйнштейна. Это один из видов так называемой квантовой статистики - теории, описывающей состояние систем, содержащих очень большое число частиц, подчиняющихся законам квантовой механики.

Все частицы - как заключенные в атоме, так и свободные - делятся на два класса. Для одного из них справедлив принцип запрета Паули, в соответствии с которым на каждом энергетическом уровне не может находиться более одной частицы. Частицы этого класса называются фермионами (это электроны, протоны и нейтроны; в этот же класс входят частицы, состоящие из нечетного числа фермионов), а закон их распределения называется статистикой Ферми-Дирака. Частицы другого класса называются бозонами и не подчиняются принципу Паули: на одном энергетическом уровне может скапливаться неограниченное число бозонов. В этом случае говорят о статистике Бозе-Эйнштейна. К бозонам относятся фотоны, некоторые короткоживущие элементарные частицы (например, пи-мезоны), а также атомы, состоящие из четного числа фермионов. При очень низких температурах бозоны собираются на самом низком - основном - энергетическом уровне; тогда говорят, что происходит бозе-эйнштейновская конденсация. Атомы конденсата теряют свои индивидуальные свойства, и несколько миллионов их начинают вести себя как одно целое, их волновые функции сливаются, а поведение описывается одним уравнением. Это дает возможность говорить, что атомы конденсата стали когерентными, подобно фотонам в лазерном излучении. Исследователи из американского Национального института стандартов и технологий использовали это свойство конденсата Бозе-Эйнштейна для создания "атомного лазера" (см. "Наука и жизнь" № 10, 1997 г.).

Самоиндуцированная прозрачность. Это один из эффектов нелинейной оптики - оптики мощных световых полей. Он заключается в том, что очень короткий и мощный световой импульс проходит без ослабления через среду, которая поглощает непрерывное излучение или длинные импульсы: непрозрачная среда становится для него прозрачной. Самоиндуцированая прозрачность наблюдается в разреженных газах при длительности импульса порядка 10-7 - 10-8 с и в конденсированных средах - менее 10-11 c. При этом возникает запаздывание импульса - его групповая скорость сильно уменьшается. Впервые этот эффект был продемонстрирован Мак-Коллом и Ханом в 1967 году на рубине при температуре 4 К. В 1970 году в парах рубидия были получены задержки, соответствующие скоростям импульса, на три порядка (в 1000 раз) меньшим скорости света в вакууме.

Обратимся теперь к уникальному эксперименту 1999 года. Его осуществили Лен Вестергард Хэу, Захари Даттон, Сайрус Берузи (Роуландовский институт) и Стив Харрис (Стэнфордский университет). Они охладили плотное, удерживаемое магнитным полем облако атомов натрия до перехода их в основное состояние - на уровень с наименьшей энергией. При этом выделяли только те атомы, у которых магнитный дипольный момент был направлен противоположно направлению магнитного поля. Затем исследователи охладили облако до температуры менее 435 нК (нанокельвинов, т.е. 0,000000435 К, почти до абсолютного нуля).

После этого конденсат осветили "связующим пучком" линейно поляризованного лазерного света с частотой, соответствующей энергии его слабого возбуждения. Атомы перешли на более высокий энергетический уровень и перестали поглощать свет. В результате конденсат стал прозрачным для идущего следом лазерного излучения. И вот здесь появились очень странные и необычные эффекты. Измерения показали, что при определенных условиях импульс, проходящий через бозе-эйнштейновский конденсат, испытывает задержку, соответствующую замедлению света более чем на семь порядков - в 20 миллионов раз. Скорость светового импульса замедлилась до 17 м/с, а его длина уменьшилась в несколько раз - до 43 микрометров.

Исследователи считают, что, избежав лазерного нагрева конденсата, им удастся еще сильнее замедлить свет - возможно, до скорости нескольких сантиметров в секунду.

Система с такими необычными характеристиками позволит исследовать квантово-оптические свойства вещества, а также создавать различные устройства для квантовых компьютеров будущего, скажем, однофотонные переключатели.

Хотя в обыденной жизни редко кому приходится непосредственно рассчитывать, чему равна скорость света, интерес к данному вопросу проявляется еще в детстве. Удивительно, но все мы ежедневно сталкиваемся с признаком константы скорости распространения электромагнитных волн. Скорость света - это фундаментальная величина, благодаря которой вся Вселенная существует именно в том виде, какой мы ее знаем.

Наверняка, каждый, наблюдая в детстве за вспышкой молнии и последующим за ней раскатом грома, пытался понять, чем вызвана задержка между первым и вторым явлением. Несложные мысленные рассуждения быстро приводили к закономерному выводу: скорость света и звука различна. Это первое знакомство с двумя важными физическими величинами. Впоследствии кто-то получал необходимые знания и мог легко объяснить происходящее. Что же является причиной странного поведения грома? Ответ заключается в том, что скорость света, составляющая около 300 тыс. км/с, почти в миллион раз превышает скорость распространения в воздухе (330 м/с). Поэтому человек сначала видит от молнии и лишь через время слышит грохот грома. Например, если от эпицентра до наблюдателя 1 км, то свет преодолеет это расстояние за 3 микросекунды, а вот звуку понадобится целых 3 с. Зная скорость света и время задержки между вспышкой и громом, можно вычислить расстояние.

Попытки измерить ее предпринимались давно. Сейчас довольно забавно читать о проводимых экспериментах, однако, в те далекие времена, до появления точных приборов, все было более чем серьезно. При попытках узнать, какова скорость света, был проведен один интересный опыт. С одного конца вагона быстро перемещающегося поезда находился человек с точным хронометром, а с противоположной стороны его помощник по команде открывал заслонку лампы. Согласно задумке, хронометр должен был позволить определить скорость распространения фотонов света. Причем благодаря смене позиций лампы и хронометра (при сохраняющемся направлении движения поезда), удалось бы узнать, постоянна ли скорость света, или ее можно увеличить/уменьшить (в зависимости от направления луча, теоретически, быстрота движения поезда могла бы влиять на измеряемую в эксперименте скорость). Конечно, опыт не удался, так как скорость света и регистрация хронометром несопоставима.

Впервые максимально точное измерение было выполнено в 1676 году благодаря наблюдениям за Олаф Ремер обратил внимание, что реальное появление Ио и расчетные данные различались на 22 минуты. Когда планеты сближались, задержка уменьшалась. Зная расстояние, удалось вычислить скорость света. Она составила около 215 тыс. км/с. Затем, в 1926 году, Д. Бредли, изучая изменение видимых положений звезд (аберрацию), обратил внимание на закономерность. Точка размещения звезды менялась в зависимости от времени года. Следовательно, влияние оказывало положение планеты относительно Солнца. Можно привести аналогию - капли дождя. Без ветра они летят вертикально вниз, но стоит побежать - и их видимая траектория изменяется. Зная скорость вращения планеты вокруг Солнца, удалось вычислить скорость света. Она составила 301 тыс. км/с.

В 1849 году А. Физо провел следующий опыт: между источником света и зеркалом, удаленным на 8 км, находилось вращающееся Скорость его вращения увеличивали до тех пор, пока в следующем зазоре поток отраженного света не превращался в постоянный (немерцающий). Расчеты дали 315 тыс. км/с. Через три года Л. Фуко вращающимся зеркалом и получил 298 тыс. км/с.

Последующие опыты становились все точнее, учитывая преломление в воздухе и пр. В настоящее время актуальными считаются данные, полученные с помощью цезиевых часов и лазерного луча. Согласно им, равна 299 тыс. км/с.

Несмотря на то что в обычной жизни рассчитывать скорость света нам не приходится, многих эта величина интересует с детского возраста.


Наблюдая за молнией во время грозы, наверняка каждый ребенок пытался понять, с чем связана задержка между ее вспышкой и громовыми раскатами. Очевидно, что свет и звук имеют разную скорость. Почему так происходит? Что такое скорость света и каким образом ее можно измерить?

В науке скоростью света называют быстроту перемещения лучей в воздушном пространстве или вакууме. Свет – это электромагнитное излучение, которое воспринимает глаз человека. Он способен передвигаться в любой среде, что оказывает прямое влияние на его скорость.

Попытки измерить эту величину предпринимались с давних времен. Ученые античной эпохи полагали, что скорость света является бесконечной. Такое же мнение высказывали и физики XVI–XVII веков, хотя уже тогда некоторые исследователи, такие как Роберт Гук и Галилео Галлилей, допускали конечность .

Серьезный прорыв в изучении скорости света произошел благодаря датскому астроному Олафу Ремеру, который первым обратил внимание на запаздывание затмения спутника Юпитера Ио по сравнению с первичными расчетами.

Тогда ученый определил примерное значение скорости, равное 220 тысячам метров в секунду. Более точно эту величину сумел вычислить британский астроном Джеймс Бредли, хотя и он слегка ошибся в расчетах.


В дальнейшем попытки рассчитать реальную скорость света предпринимали ученые из разных стран. Однако только в начале 1970-х годов с появлением лазеров и мазеров, имевших стабильную частоту излучения, исследователям удалось сделать точный расчет, а в 1983 году за основу было принято современное значение с корреляцией на относительную погрешность.

Если говорить простым языком, скорость света – это время, за которое солнечный луч преодолевает определенное расстояние. В качестве единицы времени принято использовать секунду, в качестве расстояния – метр. С точки зрения физики свет – это уникальное явление, имеющее в конкретной среде постоянную скорость.

Предположим, человек бежит со скоростью 25 км/час и пытается догнать автомобиль, который едет со скоростью 26 км/час. Выходит, что машина движется на 1 км/час быстрее бегуна. Со светом всё обстоит иначе. Независимо от быстроты передвижения автомобиля и человека, луч всегда будет передвигаться относительно них с неизменной скоростью.

Скорость света во многом зависит от вещества, в котором распространяются лучи. В вакууме она имеет постоянное значение, а вот в прозрачной среде может иметь различные показатели.

В воздухе или воде ее величина всегда меньше, чем в вакууме. К примеру, в реках и океанах скорость света составляет порядка ¾ от скорости в космосе, а в воздухе при давлении в 1 атмосферу – на 2 % меньше, чем в вакууме.


Подобное явление объясняется поглощением лучей в прозрачном пространстве и их повторным излучением заряженными частицами. Эффект называют рефракцией и активно используют при изготовлении телескопов, биноклей и другой оптической техники.

Если рассматривать конкретные вещества, то в дистиллированной воде скорость света составляет 226 тысяч километров в секунду, в оптическом стекле – около 196 тысяч километров в секунду.

В вакууме скорость света в секунду имеет постоянное значение в 299 792 458 метров, то есть немногим больше 299 тысяч километров. В современном представлении она является предельной. Иными словами, никакая частица, никакое небесное тело не способны достичь той скорости, какую развивает свет в космическом пространстве.

Даже если предположить, что появится Супермен, который будет лететь с огромной скоростью, луч все равно будет убегать от него с большей быстротой.

Хотя скорость света является максимально достижимой в вакуумном пространстве, считается, что существуют объекты, которые движутся быстрее.

На такое способны, к примеру, солнечные зайчики, тень или фазы колебания в волнах, но с одной оговоркой – даже если они разовьют сверхскорость, энергия и информация будут передаваться в направлении, которое не совпадает направлением их движения.


Что касается прозрачной среды, то на Земле существуют объекты, которые вполне способны двигаться быстрее света. К примеру, если луч, проходящий через стекло, замедляет свою скорость, то электроны не ограничены в быстроте передвижения, поэтому при прохождении через стеклянные поверхности могут перемещаться быстрее света.

Такое явление называется эффект Вавилова – Черенкова и чаще всего наблюдается в ядерных реакторах или в глубинах океанов.

Похожие статьи