Похідна від дужки в міру. Правила обчислення похідних

Висновок формули похідної статечної функції (x у ступені a). Розглянуто похідні від коренів із x. Формула похідної статечної функції вищого порядку. Приклади обчислення похідних.

Зміст

Див. також: Ступінна функція та коріння, формули та графік
Графіки статечної функції

Основні формули

Похідна від x у ступені a дорівнює a , помноженому на x у ступені a мінус один:
(1) .

Похідна від кореня ступеня n з x до ступеня m дорівнює:
(2) .

Висновок формули похідної статечної функції

Випадок x > 0

Розглянемо статечну функцію від змінної x з показником ступеня a:
(3) .
Тут a є довільним дійсним числом. Спочатку розглянемо випадок.

Щоб знайти похідну функції (3), скористаємось властивостями статечної функції та перетворюємо її до наступного виду:
.

Тепер знаходимо похідну, застосовуючи:
;
.
Тут.

Формулу (1) доведено.

Висновок формули похідної від кореня ступеня n з x до ступеня m

Тепер розглянемо функцію, що є коренем такого виду:
(4) .

Щоб знайти похідну, перетворимо корінь до статечної функції:
.
Порівнюючи з формулою (3) бачимо, що
.
Тоді
.

За формулою (1) знаходимо похідну:
(1) ;
;
(2) .

Насправді немає необхідності запам'ятовувати формулу (2). Набагато зручніше спочатку перетворити коріння до статечних функцій, а потім знаходити їх похідні, застосовуючи формулу (1) (див. приклади наприкінці сторінки).

Випадок x = 0

Якщо , то статечна функція визначена при значенні змінної x = 0 . Знайдемо похідну функції (3) при x = 0 . Для цього скористаємося визначенням похідної:
.

Підставимо x = 0 :
.
При цьому під похідною ми розуміємо правосторонню межу, для якої .

Отже, ми знайшли:
.
Звідси видно, що з , .
При , .
При , .
Цей результат виходить і за формулою (1):
(1) .
Тому формула (1) справедлива і за x = 0 .

Випадок x< 0

Знову розглянемо функцію (3):
(3) .
При деяких значеннях постійної a вона визначена і при негативних значеннях змінної x . А саме, хай буде раціональним числом. Тоді його можна подати у вигляді нескоротного дробу:
,
де m і n – цілі числа, які не мають спільного дільника.

Якщо n непарне, то статечна функція визначена при негативних значеннях змінної x . Наприклад, при n = 3 та m = 1 ми маємо кубічний корінь з x :
.
Він і при негативних значеннях змінної x .

Знайдемо похідну статечної функції (3) при і при раціональних значеннях постійної a для яких вона визначена. Для цього представимо x у наступному вигляді:
.
Тоді ,
.
Знаходимо похідну, виносячи постійну за знак похідної та застосовуючи правило диференціювання складної функції:

.
Тут. Але
.
Оскільки , то
.
Тоді
.
Тобто формула (1) справедлива і при:
(1) .

Похідні вищих порядків

Тепер знайдемо похідні вищих порядків від статечної функції
(3) .
Похідну першого порядку ми вже знайшли:
.

Виносячи постійну a за знак похідної, знаходимо похідну другого порядку:
.
Аналогічним чином знаходимо похідні третього та четвертого порядків:
;

.

Звідси видно, що похідна довільного n-го порядкумає такий вигляд:
.

Зауважимо, що якщо a є натуральним числом, то n -я похідна є постійною:
.
Тоді всі наступні похідні дорівнюють нулю:
,
при .

Приклади обчислення похідних

приклад

Знайдіть похідну функції:
.

Перетворюємо коріння до ступенів:
;
.
Тоді вихідна функція набуває вигляду:
.

Знаходимо похідні ступенів:
;
.
Похідна постійної дорівнює нулю:
.

На якому ми розібрали найпростіші похідні, а також познайомились із правилами диференціювання та деякими технічними прийомами знаходження похідних. Таким чином, якщо з похідними функцій у Вас не дуже або якісь моменти цієї статті будуть не зовсім зрозумілі, то спочатку ознайомтеся з вищезгаданим уроком. Будь ласка, налаштуйтеся на серйозний лад – матеріал не з простих, але я намагаюся викласти його просто і доступно.

На практиці з похідною складною функцією доводиться стикатися дуже часто, я навіть сказав би, майже завжди, коли Вам дано завдання на перебування похідних.

Дивимося в таблицю правило (№5) диференціювання складної функції:

Розбираємось. Насамперед звернемо увагу на запис . Тут у нас дві функції - і, причому функція, образно кажучи, вкладена в функцію. Функція такого виду (коли одна функція вкладена в іншу) і називається складною функцією.

Функцію я називатиму зовнішньою функцією, а функцію – внутрішньою (або вкладеною) функцією.

! Дані визначення не є теоретичними та не повинні фігурувати у чистовому оформленні завдань. Я застосовую неформальні вирази "зовнішня функція", "внутрішня" функція тільки для того, щоб Вам легше було зрозуміти матеріал.

Для того щоб прояснити ситуацію, розглянемо:

Приклад 1

Знайти похідну функції

Під синусом у нас знаходиться не просто буква «ікс», а ціле вираження, тому знайти похідну відразу по таблиці не вийде. Також ми помічаємо, що тут неможливо застосувати перші чотири правила, начебто є різниця, але річ у тому, що «розривати на частини» синус не можна:

У цьому прикладі з моїх пояснень інтуїтивно зрозуміло, що функція – це складна функція, причому многочлен є внутрішньої функцією (вкладенням), а – зовнішньої функцією.

Перший крок, який потрібно виконати при знаходженні похідної складної функції полягає в тому, щоб розібратися, яка функція є внутрішньою, а яка – зовнішньою.

У разі простих прикладів зрозуміло, що під синус вкладений многочлен . А як бути, якщо все не очевидно? Як точно визначити яка функція є зовнішньою, а яка внутрішньою? Для цього я пропоную використовувати наступний прийом, який можна проводити подумки або на чернетці.

Уявимо, що нам потрібно обчислити на калькуляторі значення виразу (замість одиниці може бути будь-яке число).

Що ми обчислимо насамперед? В першу чергунеобхідно виконати таку дію: , тому многочлен і буде внутрішньої функцією :

У другу чергупотрібно буде знайти, тому синус - буде зовнішньою функцією:

Після того, як ми РОЗІБРАЛИСЯз внутрішньою та зовнішньою функціями саме час застосувати правило диференціювання складної функції .

Починаємо вирішувати. З уроку Як знайти похідну?ми пам'ятаємо, що оформлення рішення будь-якої похідної завжди починається так - укладаємо вираз у дужки і ставимо праворуч угорі штрих:

Спочаткузнаходимо похідну зовнішньої функції (синусу), дивимося на таблицю похідних елементарних функцій і помічаємо, що . Всі табличні формули застосовні і в тому випадку, якщо «ікс» замінити складним виразом, в даному випадку:

Зверніть увагу, що внутрішня функція не змінилася, її ми не чіпаємо.

Ну і цілком очевидно, що

Результат застосування формули у чистовому оформленні виглядає так:

Постійний множник зазвичай виносять на початок виразу:

Якщо залишилося якесь непорозуміння, перепишіть рішення на папір і прочитайте пояснення.

Приклад 2

Знайти похідну функції

Приклад 3

Знайти похідну функції

Як завжди записуємо:

Розбираємось, де у нас зовнішня функція, а де внутрішня. Для цього пробуємо (подумки або на чернетці) обчислити значення виразу при . Що потрібно виконати насамперед? В першу чергу потрібно порахувати чому рівна основа: , отже, багаточлен - і є внутрішня функція:

І тільки потім виконується зведення в ступінь , отже, статечна функція - це зовнішня функція:

Згідно з формулою , спочатку потрібно знайти похідну від зовнішньої функції, у разі, від ступеня. Розшукуємо у таблиці необхідну формулу: . Повторюємо ще раз: будь-яка таблична формула справедлива не тільки для «ікс», але і для складного вираження. Таким чином, результат застосування правила диференціювання складної функції наступний:

Знову наголошую, що коли ми беремо похідну від зовнішньої функції, внутрішня функція у нас не змінюється:

Тепер залишилося знайти зовсім просту похідну від внутрішньої функції і трохи «зачесати» результат:

Приклад 4

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Для закріплення розуміння похідної складної функції наведу приклад без коментарів, спробуйте самостійно розібратися, поміркувати, де зовнішня і внутрішня функція, чому завдання вирішені саме так?

Приклад 5

а) Знайти похідну функції

б) Знайти похідну функції

Приклад 6

Знайти похідну функції

Тут у нас корінь, а для того, щоб продиференціювати корінь, його потрібно подати у вигляді ступеня. Таким чином, спочатку наводимо функцію в належний для диференціювання вигляд:

Аналізуючи функцію, приходимо до висновку, що сума трьох доданків – це внутрішня функція, а зведення у ступінь – зовнішня функція. Застосовуємо правило диференціювання складної функції :

Ступінь знову представляємо у вигляді радикала (кореня), а для похідної внутрішньої функції застосовуємо просте правило диференціювання суми:

Готово. Можна ще у дужках привести вираз до спільного знаменника та записати все одним дробом. Гарно, звичайно, але коли виходять громіздкі довгі похідні – краще цього не робити (легко заплутатися, припуститися непотрібної помилки, та й викладачеві буде незручно перевіряти).

Приклад 7

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Цікаво відзначити, що іноді замість правила диференціювання складної функції можна використовувати правило приватного диференціювання Але таке рішення виглядатиме як збочення незвичайно. Ось характерний приклад:

Приклад 8

Знайти похідну функції

Тут можна використовувати правило диференціювання приватного , але набагато вигідніше знайти похідну через правило диференціювання складної функції:

Підготовляємо функцію для диференціювання – виносимо мінус за знак похідної, а косинус піднімаємо до чисельника:

Косинус – внутрішня функція, зведення у ступінь – зовнішня функція.
Використовуємо наше правило :

Знаходимо похідну внутрішньої функції, косинус скидаємо назад донизу:

Готово. У розглянутому прикладі важливо не заплутатися у знаках. До речі, спробуйте вирішити його за допомогою правила , відповіді повинні збігтися.

Приклад 9

Знайти похідну функції

Це приклад самостійного рішення (відповідь наприкінці уроку).

Досі ми розглядали випадки, коли у нас у складній функції було лише одне вкладення. У практичних завданнях часто можна зустріти похідні, де, як матрьошки, одна в іншу, вкладені відразу 3, а то і 4-5 функцій.

Приклад 10

Знайти похідну функції

Розбираємось у вкладеннях цієї функції. Пробуємо обчислити вираз за допомогою піддослідного значення. Як би ми рахували на калькуляторі?

Спочатку потрібно знайти , отже, арксинус - найглибше вкладення:

Потім цей арксинус одиниці слід звести у квадрат:

І, нарешті, сімку зводимо в ступінь:

Тобто, в даному прикладі у нас три різні функції і два вкладення, при цьому найвнутрішній функцією є арксинус, а зовнішньої функцією – показова функція.

Починаємо вирішувати

Відповідно до правила Спочатку потрібно взяти похідну від зовнішньої функції. Дивимося в таблицю похідних і знаходимо похідну показової функції: Єдина відмінність – замість «ікс» у нас складний вираз, що не скасовує справедливість цієї формули. Отже, результат застосування правила диференціювання складної функції наступний.

Складні похідні. Логарифмічна похідна.
Похідна статечно-показової функції

Продовжуємо підвищувати свою техніку диференціювання. На цьому уроці ми закріпимо пройдений матеріал, розглянемо складніші похідні, а також познайомимося з новими прийомами та хитрощами знаходження похідної, зокрема з логарифмічною похідною.

Тим читачам, які мають низький рівень підготовки, слід звернутися до статті Як знайти похідну? Приклади рішеньяка дозволить підняти свої навички практично з нуля. Далі необхідно уважно вивчити сторінку Похідна складної функції, зрозуміти та вирішувати Усенаведені приклади. Даний урок логічно третій за рахунком, і після його освоєння Ви впевнено диференціюватимете досить складні функції. Небажано дотримуватись позиції «Куди ще? Та й так вистачить!», оскільки всі приклади та прийоми рішення взяті з реальних контрольних робіт і часто трапляються на практиці.

Почнемо із повторення. На уроці Похідна складної функціїми розглянули низку прикладів із докладними коментарями. У ході вивчення диференціального обчислення та інших розділів математичного аналізу – диференціювати доведеться дуже часто, і не завжди буває зручно (та й завжди потрібно) розписувати приклади дуже докладно. Тому ми потренуємося в усному знаходженні похідних. Найкращими «кандидатами» для цього є похідні найпростіших із складних функцій, наприклад:

За правилом диференціювання складної функції :

При вивченні інших тем матану в майбутньому такий докладний запис найчастіше не потрібний, передбачається, що студент вміє знаходити подібні похідні на автопілоті автоматі. Припустимо, що о 3 годині ночі пролунав телефонний дзвінок, і приємний голос запитав: «Чому дорівнює похідна тангенса двох ікс?». На це має бути майже миттєва і ввічлива відповідь: .

Перший приклад буде одразу призначений для самостійного рішення.

Приклад 1

Знайти такі похідні усно, на одну дію, наприклад: . Для виконання завдання потрібно використовувати лише таблицю похідних елементарних функцій(Якщо вона ще не запам'яталася). Якщо виникнуть труднощі, рекомендую перечитати урок Похідна складної функції.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Відповіді наприкінці уроку

Складні похідні

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити це значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, до внутрішньої. Вирішуємо:

Начебто без помилок.

(1) Беремо похідну від квадратного кореня.

(2) Беремо похідну від різниці, використовуючи правило

(3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

(4) Беремо похідну від косинуса.

(5) Беремо похідну від логарифму.

(6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» – логарифм: . Чому можна так зробити? А хіба - Це не твір двох множників і правило не працює? Нічого складного немає:

Тепер залишилося вдруге застосувати правило до дужки:

Можна ще поплутатися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь? Наведемо вираз чисельника до спільного знаменника та позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання та просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм

Приклад 8

Знайти похідну функції

Тут можна піти довгим шляхом, використовуючи правило диференціювання складної функції:

Але перший крок відразу кидає у зневіру - належить взяти неприємну похідну від дробового ступеня, а потім ще й від дробу.

Тому перед тимяк брати похідну від «накрученого» логарифму, його попередньо спрощують, використовуючи відомі шкільні властивості:



! Якщо під рукою є зошит із практикою, перепишіть ці формули прямо туди. Якщо зошита немає, перемалюйте їх на листочок, оскільки приклади уроку, що залишилися, буду обертатися навколо цих формул.

Саме рішення можна оформити приблизно так:

Перетворимо функцію:

Знаходимо похідну:

Попереднє перетворення самої функції значно спростило рішення. Таким чином, коли для диференціювання запропоновано подібний логарифм, його завжди доцільно «розвалити».

А зараз кілька нескладних прикладів для самостійного вирішення:

Приклад 9

Знайти похідну функції

Приклад 10

Знайти похідну функції

Всі перетворення та відповіді в кінці уроку.

Логарифмічна похідна

Якщо похідна від логарифмів – це така солодка музика, виникає питання, а чи не можна в деяких випадках організувати логарифм штучно? Можна, можливо! І навіть треба.

Приклад 11

Знайти похідну функції

Подібні приклади ми нещодавно розглянули. Що робити? Можна послідовно застосувати правило диференціювання приватного, та був правило диференціювання твори. Недолік способу полягає в тому, що вийде величезний триповерховий дріб, з яким зовсім не хочеться мати справи.

Але в теорії та практиці є така чудова річ, як логарифмічна похідна. Логарифми можна організувати штучно, «навісивши» їх на обидві частини:

Примітка : т.к. функція може набувати негативних значень, то, взагалі кажучи, потрібно використовувати модулі: , які зникнуть внаслідок диференціювання Однак допустиме і поточне оформлення, де за умовчанням беруться до уваги комплекснізначення. Але якщо з усією суворістю, то і в тому, і в іншому випадку слід зробити застереження, що.

Тепер потрібно максимально розвалити логарифм правої частини (формули перед очима?). Я розпишу цей процес докладно:

Власне приступаємо до диференціювання.
Укладаємо під штрих обидві частини:

Похідна правої частини досить проста, її я не коментуватиму, оскільки якщо ви читаєте цей текст, то повинні впевнено з нею впоратися.

Як бути з лівою частиною?

У лівій частині у нас складна функція. Передбачаю питання: «Чому, там же одна буква «ігрок» під логарифмом?».

Справа в тому, що ця «одна літерка ігорок» – САМА ЗА СЕБЕ Є ФУНКЦІЄЮ(якщо не зрозуміло, зверніться до статті Похідна від функції, заданої неявно). Тому логарифм – це зовнішня функція, а «гравець» – внутрішня функція. І ми використовуємо правило диференціювання складної функції :

У лівій частині як за помахом чарівної палички у нас «намалювалася» похідна. Далі за правилом пропорції перекидаємо «ігрок» із знаменника лівої частини нагору правої частини:

А тепер згадуємо, про який такий «гравець»-функцію ми міркували під час диференціювання? Дивимося на умову:

Остаточна відповідь:

Приклад 12

Знайти похідну функції

Це приклад самостійного рішення. Зразок оформлення прикладу цього типу наприкінці уроку.

За допомогою логарифмічної похідної можна було вирішити будь-який з прикладів № 4-7, інша справа, що там функції простіші, і, можливо, використання логарифмічної похідної не надто й виправдане.

Похідна статечно-показової функції

Цю функцію ми ще розглядали. Ступінно-показова функція – це функція, у якої і ступінь та основа залежать від «ікс». Класичний приклад, який вам наведуть у будь-якому підручнику або на будь-якій лекції:

Як знайти похідну від статечно-показової функції?

Необхідно використовувати щойно розглянутий прийом – логарифмічну похідну. Навішуємо логарифми на обидві частини:

Як правило, у правій частині з-під логарифму виноситься ступінь:

У результаті в правій частині у нас вийшов добуток двох функцій, який диференціюватиметься за стандартною формулою .

Знаходимо похідну, для цього укладаємо обидві частини під штрихи:

Подальші дії нескладні:

Остаточно:

Якщо якесь перетворення не зовсім зрозуміле, будь ласка, уважно перечитайте пояснення Прикладу №11.

У практичних завданнях статечно-показова функція завжди буде складнішою, ніж розглянутий лекційний приклад.

Приклад 13

Знайти похідну функції

Використовуємо логарифмічну похідну.

У правій частині у нас константа та твір двох множників – «ікса» та «логарифма логарифма ікс» (під логарифм вкладено ще один логарифм). При диференціюванні константу, як ми пам'ятаємо, краще одразу винести за знак похідної, щоб вона не заважала під ногами; і, звичайно, застосовуємо знайоме правило :


Якщо ти зайшов сюди, то вже, напевно, встиг побачити у підручнику цю формулу

і зробити ось таке обличчя:

Друг, не хвилюйся! Насправді все просто до неподобства. Ти обов'язково все зрозумієш. Тільки одне прохання – прочитай статтю не кваплячись, намагайся зрозуміти кожен крок. Я писав максимально просто та наочно, але вникнути в ідею все одно треба. І обов'язково виріши завдання із статті.

Що таке складна функція?

Уяви, що ти переїжджаєш в іншу квартиру і тому збираєш речі у великі коробки. Нехай треба зібрати якісь дрібні предмети, наприклад, шкільне письмове приладдя. Якщо просто скидати їх у величезну коробку, вони загубляться серед інших речей. Щоб цього уникнути, ти спочатку кладеш їх, наприклад, у пакет, який потім вкладаєш у велику коробку, після чого її запечатуєш. Цей "найскладніший" процес представлений на схемі нижче:

Здавалося б, до чого тут математика? Та при тому, що складна функція формується точно таким же способом! Тільки «упаковуємо» ми не зошити і ручки, а (x), при цьому «пакетами» і «коробками» служать різні.

Наприклад, візьмемо x і «запакуємо» його у функцію:


В результаті отримаємо, ясна річ, \(\cos⁡x). Це наш «пакет із речами». А тепер кладемо його в "коробку" - запаковуємо, наприклад, у кубічну функцію.


Що вийде у результаті? Так, мабуть, буде "пакет з речами в коробці", тобто "косинус ікса в кубі".

Конструкція, що вийшла, і є складна функція. Вона відрізняється від простої тим, що до одного ікса застосовується КІЛЬКА «впливів» (упаковок) поспільі виходить як би "функція від функції" - "упаковка в упаковці".

У шкільному курсі видів цих самих «упаковок» зовсім мало, лише чотири:

Давай тепер «упакуємо» ікс спочатку у показову функцію з основою 7, а потім у тригонометричну функцію . Отримаємо:

\(x → 7^x → tg⁡(7^x)\)

А тепер «упакуємо» ікс двічі в тригонометричні функції, спочатку в , а потім в :

\(x → sin⁡x → ctg⁡ (sin⁡x)\)

Просто, правда?

Напиши тепер сам функції, де ікс:
- спочатку «упаковується» в косинус, а потім у показову функцію з основою (3);
- спочатку у п'яту ступінь, а потім у тангенс;
- спочатку в логарифм на підставі \(4\) потім у ступінь \(-2\).

Відповіді на це завдання подивися наприкінці статті.

А чи можемо ми «упакувати» ікс не двічі, а тричі? Да без проблем! І чотири, і п'ять, і двадцять і п'ять разів. Ось, наприклад, функція, в якій ікс «упакований» (4) рази:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

Але такі формули у шкільній практиці не зустрінуться (студентам пощастило більше – у них може бути й складніше☺).

«Розпакування» складної функції

Подивися на попередню функцію ще раз. Чи зможеш ти розібратися в послідовності "упаковки"? У що ікс запхали спочатку, а потім і так далі до самого кінця. Тобто – яка функція вкладена у яку? Візьми листок та запиши, як ти вважаєш. Можна зробити це ланцюжком зі стрілками, як ми писали вище або будь-яким іншим способом.

Тепер правильна відповідь: спочатку ікс «упакували» в \(4\)-ий ступінь, потім результат упаковали в синус, його в свою чергу помістили в логарифм на підставі \(2\), і зрештою всю цю конструкцію засунули в ступінь п'ятірки.

Тобто розмотувати послідовність треба в зворотному порядку. І тут підказка як це робити простіше: одразу дивися на ікс – від нього і треба танцювати. Давай розберемо кілька прикладів.

Наприклад, така функція: \(y=tg⁡(\log_2⁡x)\). Дивимось на ікс - що з ним відбувається спочатку? Береться від нього. А потім? Береться тангенс від результату. Ось і послідовність буде така сама:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Ще приклад: \(y=\cos⁡((x^3))\). Аналізуємо – спочатку ікс звели до куба, а потім від результату взяли косинус. Отже, послідовність буде: \(x → x^3 → \cos⁡((x^3))\). Зверніть увагу, функція начебто схожа на першу (там, де з картинками). Але це зовсім інша функція: тут у кубі ікс (тобто \(\cos⁡((x·x·x)))\), а там у кубі косинус \(x\) (тобто \(\cos⁡) x·\cos⁡x·\cos⁡x\)). Ця різниця виникає через різні послідовності «упаковки».

Останній приклад (з важливою інформацією у ньому): \(y=\sin⁡((2x+5))\). Зрозуміло, що спочатку зробили арифметичні дії з іксом, потім від результату взяли синус: \(x → 2x+5 → \sin⁡((2x+5))\). І це важливий момент: незважаючи на те, що арифметичні дії функціями власними силами не є, тут вони теж виступають як спосіб «упаковки». Давай трохи заглибимося в цю тонкість.

Як я вже говорив вище, у простих функціях ікс «упаковується» один раз, а в складних – два і більше. При цьому будь-яка комбінація простих функцій (тобто їх сума, різницю, множення чи поділ) - також проста функція. Наприклад, \(x^7\) - проста функція і \(ctg x\) - теж. Значить, і всі їх комбінації є простими функціями:

\(x^7+ ctg x\) - проста,
\(x^7· ctg x\) – проста,
\(\frac(x^7)(ctg x)\) - проста і т.д.

Однак, якщо до такої комбінації застосувати ще одну функцію – буде вже складна функція, оскільки «упаковок» стане дві. Дивись схему:



Добре, давай тепер сам. Напиши послідовність «загортання» функцій:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
Відповіді знову наприкінці статті.

Внутрішня та зовнішня функції

Навіщо нам потрібно розбиратися у вкладеності функцій? Що це нам дає? Справа в тому, що без такого аналізу ми не зможемо надійно знаходити похідні розібраних вище функцій.

І для того, щоб рухатися далі, нам потрібні ще два поняття: внутрішня та зовнішня функції. Це дуже проста річ, більше того, насправді ми їх уже розібрали вище: якщо згадати нашу аналогію на самому початку, то внутрішня функція – це пакет, а зовнішня – це коробка. Тобто. те, у що ікс "загортають" спочатку - це внутрішня функція, а те, у що "загортають" внутрішню - вже зовнішня. Ну, зрозуміло чому – вона ж зовні, отже, зовнішня.

Ось у цьому прикладі: \(y=tg⁡(log_2⁡x)\), функція \(\log_2⁡x\) – внутрішня, а
- Зовнішня.

А в цьому: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) - внутрішня, а
- Зовнішня.

Виконай останню практику аналізу складних функцій, і перейдемо, нарешті, до того, заради чого все починалося - знаходитимемо похідні складних функцій:

Заповни пропуски у таблиці:


Похідна складної функції

Браво нам, ми все-таки дісталися «босу» цієї теми – власне, похідної складної функції, а саме, до тієї жахливої ​​формули з початку статті.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

Формула ця читається так:

Похідна складної функції дорівнює добутку похідної зовнішньої функції за незмінною внутрішньою на похідну внутрішньої функції.

І відразу дивися схему розбору "за словами" щоб розуміти, що до чого ставитися:

Сподіваюся, терміни «похідна» та «твор» труднощів не викликають. "Складну функцію" - ми вже розібрали. Загвоздка в «похідній зовнішньої функції за незмінною внутрішньою». Що це таке?

Відповідь: це звичайна похідна зовнішньої функції, коли він змінюється лише зовнішня функція, а внутрішня залишається такою ж. Все одно незрозуміло? Добре, давай на прикладі.

Нехай ми маємо функцію \(y=\sin⁡(x^3)\). Зрозуміло, що внутрішня функція тут (x^3), а зовнішня
. Знайдемо тепер похідну зовнішньої за незмінною внутрішньою.

Наводяться приклади обчислення похідних із застосуванням похідної формули складної функції.

Зміст

Див. також: Доказ формули похідної складної функції

Основні формули

Тут ми наводимо приклади обчислення похідних від таких функцій:
; ; ; ; .

Якщо функцію можна представити як складну функцію у такому вигляді:
,
то її похідна визначається за формулою:
.
У наведених нижче прикладах ми будемо записувати цю формулу в наступному вигляді:
.
де.
Тут нижні індекси або розташовані під знаком похідної позначають змінні, по якій виконується диференціювання.

Зазвичай, в похідних таблицях , наводяться похідні функцій від змінної x . Однак x – це формальний параметр. Змінну x можна замінити будь-якою іншою змінною. Тому, при диференціювання функції від змінної , ми змінюємо, у таблиці похідних, змінну x на змінну u .

Прості приклади

Приклад 1

Знайти похідну складної функції
.

Запишемо задану функцію в еквівалентному вигляді:
.
У таблиці похідних знаходимо:
;
.

За формулою похідної складної функції маємо:
.
Тут.

Приклад 2

Знайти похідну
.

Виносимо постійну 5 за знак похідної та з таблиці похідних знаходимо:
.


.
Тут.

Приклад 3

Знайдіть похідну
.

Виносимо постійну -1 за знак похідної та з таблиці похідних знаходимо:
;
З таблиці похідних знаходимо:
.

Застосовуємо формулу похідної складної функції:
.
Тут.

Більш складні приклади

У складніших прикладах ми застосовуємо правило диференціювання складної функції кілька разів. При цьому ми обчислюємо похідну з кінця. Тобто розбиваємо функцію на складові частини та знаходимо похідні найпростіших частин, використовуючи таблицю похідних. Також ми застосовуємо правила диференціювання суми, твори та дроби . Потім робимо підстановки та застосовуємо формулу похідної складної функції.

Приклад 4

Знайдіть похідну
.

Виділимо найпростішу частину формули та знайдемо її похідну. .



.
Тут ми використовували позначення
.

Знаходимо похідну наступної частини вихідної функції, застосовуючи отримані результати. Застосовуємо правило диференціювання суми:
.

Ще раз застосовуємо правило диференціювання складної функції.

.
Тут.

Приклад 5

Знайдіть похідну функції
.

Виділимо найпростішу частину формули та з таблиці похідних знайдемо її похідну. .

Застосовуємо правило диференціювання складної функції.
.
Тут
.

Диференціюємо наступну частину, застосовуючи отримані результати.
.
Тут
.

Диференціюємо наступну частину.

.
Тут
.

Тепер знаходимо похідну шуканої функції.

.
Тут
.

Див. також:

Схожі статті