Mavzu bo'yicha algebra (11-sinf) bo'yicha yagona davlat imtihoniga (GIA) tayyorgarlik ko'rish uchun "Logarifmlarni taqqoslash" darsi uchun taqdimot. Logarifmlarning asosiy xossalari Logarifmlarni turli asoslar misollari bilan solishtiring

asosiy xususiyatlar.

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

bir xil asoslar

Log6 4 + log6 9.

Endi vazifani biroz murakkablashtiramiz.

Logarifmlarni yechishga misollar

Agar logarifmning asosi yoki argumenti kuch bo'lsa-chi? Keyin ushbu daraja ko'rsatkichini quyidagi qoidalarga muvofiq logarifm belgisidan chiqarish mumkin:

Albatta, agar logarifmning ODZ ga rioya qilinsa, bu qoidalarning barchasi mantiqiy bo'ladi: a > 0, a ≠ 1, x >

Vazifa. Ifodaning ma'nosini toping:

Yangi poydevorga o'tish

Logarifmning logaksi berilgan bo'lsin. U holda c > 0 va c ≠ 1 bo'lgan har qanday c soni uchun tenglik to'g'ri bo'ladi:

Vazifa. Ifodaning ma'nosini toping:

Shuningdek qarang:


Logarifmning asosiy xossalari

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Ko‘rsatkich 2,718281828…. Ko'rsatkichni eslab qolish uchun siz qoidani o'rganishingiz mumkin: ko'rsatkich 2,7 ga teng va Leo Nikolaevich Tolstoyning tug'ilgan yilidan ikki marta.

Logarifmlarning asosiy xossalari

Ushbu qoidani bilib, siz eksponentning aniq qiymatini ham, Lev Tolstoyning tug'ilgan sanasini ham bilib olasiz.


Logarifmlar uchun misollar

Logarifm ifodalari

1-misol.
A). x=10ac^2 (a>0,c>0).

3.5 xossalaridan foydalanib hisoblaymiz

2.

3.

4. Qayerda .



2-misol. x if ni toping


3-misol. Logarifmlarning qiymati berilsin

Agar log(x) ni hisoblang




Logarifmlarning asosiy xossalari

Logarifmlar, har qanday raqamlar kabi, har qanday usulda qo'shilishi, ayirilishi va o'zgartirilishi mumkin. Ammo logarifmlar oddiy sonlar emasligi sababli, bu erda qoidalar mavjud, ular chaqiriladi asosiy xususiyatlar.

Siz, albatta, ushbu qoidalarni bilishingiz kerak - ularsiz biron bir jiddiy logarifmik muammoni hal qilib bo'lmaydi. Bundan tashqari, ularning juda ozchiligi bor - siz bir kunda hamma narsani o'rganishingiz mumkin. Shunday qilib, keling, boshlaylik.

Logarifmlarni qo‘shish va ayirish

Bir xil asoslarga ega ikkita logarifmni ko'rib chiqing: logax va logay. Keyin ularni qo'shish va ayirish mumkin, va:

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

Demak, logarifmlar yig‘indisi ko‘paytmaning logarifmiga, ayirmasi esa bo‘linmaning logarifmiga teng. Iltimos, diqqat qiling: bu erda asosiy nuqta bir xil asoslar. Agar sabablar boshqacha bo'lsa, bu qoidalar ishlamaydi!

Ushbu formulalar, hatto uning alohida qismlari hisobga olinmasa ham, logarifmik ifodani hisoblashda yordam beradi ("Logarifm nima" darsiga qarang). Misollarni ko'rib chiqing va qarang:

Logarifmlar bir xil asoslarga ega bo'lgani uchun biz yig'indi formulasidan foydalanamiz:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Vazifa. Ifodaning qiymatini toping: log2 48 − log2 3.

Asoslar bir xil, biz farq formulasidan foydalanamiz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Vazifa. Ifodaning qiymatini toping: log3 135 − log3 5.

Yana asoslar bir xil, shuning uchun bizda:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Ko'rib turganingizdek, asl iboralar "yomon" logarifmlardan iborat bo'lib, ular alohida hisoblanmaydi. Ammo transformatsiyalardan so'ng butunlay normal raqamlar olinadi. Ko'pgina testlar ushbu faktga asoslanadi. Ha, testga o'xshash iboralar Yagona davlat imtihonida barcha jiddiylik bilan (ba'zida deyarli o'zgarishlarsiz) taklif etiladi.

Logarifmadan ko'rsatkichni chiqarish

Oxirgi qoida birinchi ikkitasiga amal qilishini ko'rish oson. Ammo baribir buni eslab qolish yaxshiroqdir - ba'zi hollarda bu hisob-kitoblar miqdorini sezilarli darajada kamaytiradi.

Albatta, bu qoidalarning barchasi logarifmning ODZi kuzatilsa, mantiqiy bo'ladi: a > 0, a ≠ 1, x > 0. Va yana bir narsa: barcha formulalarni nafaqat chapdan o'ngga, balki aksincha qo'llashni o'rganing. , ya'ni. Logarifmning o'ziga logarifm belgisidan oldingi raqamlarni kiritishingiz mumkin. Bu eng ko'p talab qilinadigan narsa.

Vazifa. Ifodaning qiymatini toping: log7 496.

Keling, birinchi formuladan foydalanib, argumentdagi darajadan xalos bo'laylik:
log7 496 = 6 log7 49 = 6 2 = 12

Vazifa. Ifodaning ma'nosini toping:

E'tibor bering, maxraj logarifmadan iborat bo'lib, uning asosi va argumenti aniq darajalardir: 16 = 24; 49 = 72. Bizda:

O'ylaymanki, oxirgi misol biroz tushuntirishni talab qiladi. Logarifmlar qayerga ketdi? Biz oxirgi daqiqagacha faqat maxraj bilan ishlaymiz.

Logarifm formulalari. Logarifmlar yechimlariga misollar.

Biz u erda turgan logarifmning asosini va argumentini kuchlar shaklida taqdim etdik va ko'rsatkichlarni olib tashladik - biz "uch qavatli" kasrni oldik.

Endi asosiy kasrni ko'rib chiqaylik. Numerator va maxraj bir xil sonni o'z ichiga oladi: log2 7. log2 7 ≠ 0 bo'lgani uchun biz kasrni kamaytirishimiz mumkin - 2/4 maxrajda qoladi. Arifmetika qoidalariga ko'ra, to'rttani hisoblagichga o'tkazish mumkin, bu bajarilgan. Natijada javob bo'ldi: 2.

Yangi poydevorga o'tish

Logarifmlarni qo'shish va ayirish qoidalari haqida gapirganda, ular faqat bir xil asoslar bilan ishlashini alohida ta'kidladim. Agar sabablar boshqacha bo'lsa-chi? Agar ular bir xil sonning aniq kuchlari bo'lmasa-chi?

Yangi poydevorga o'tish uchun formulalar yordamga keladi. Keling, ularni teorema shaklida tuzamiz:

Logarifmning logaksi berilgan bo'lsin. U holda c > 0 va c ≠ 1 bo'lgan har qanday c soni uchun tenglik to'g'ri bo'ladi:

Xususan, agar c = x o'rnatsak, biz quyidagilarni olamiz:

Ikkinchi formuladan kelib chiqadiki, logarifmning asosi va argumenti almashtirilishi mumkin, ammo bu holda butun ifoda "aylantiriladi", ya'ni. logarifm maxrajda ko'rinadi.

Bu formulalar oddiy sonli ifodalarda kam uchraydi. Ular qanchalik qulay ekanligini faqat logarifmik tenglamalar va tengsizliklarni yechishdagina baholash mumkin.

Biroq, yangi poydevorga o'tishdan tashqari, umuman hal qilib bo'lmaydigan muammolar mavjud. Keling, ulardan bir nechtasini ko'rib chiqaylik:

Vazifa. Ifodaning qiymatini toping: log5 16 log2 25.

E'tibor bering, ikkala logarifmning argumentlari aniq kuchlarni o'z ichiga oladi. Keling, ko'rsatkichlarni chiqaramiz: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Endi ikkinchi logarifmni “teskari” qilaylik:

Faktorlarni qayta tartibga solishda mahsulot o'zgarmasligi sababli, biz xotirjamlik bilan to'rt va ikkitani ko'paytirdik va keyin logarifmlar bilan ishladik.

Vazifa. Ifodaning qiymatini toping: log9 100 lg 3.

Birinchi logarifmning asosi va argumenti aniq kuchlardir. Keling, buni yozamiz va ko'rsatkichlardan xalos bo'laylik:

Endi yangi bazaga o'tish orqali o'nlik logarifmdan xalos bo'laylik:

Asosiy logarifmik identifikatsiya

Ko'pincha yechim jarayonida raqamni berilgan asosga logarifm sifatida ko'rsatish kerak bo'ladi. Bunday holda, quyidagi formulalar bizga yordam beradi:

Birinchi holda, n soni argumentda ko'rsatkichga aylanadi. n soni mutlaqo har qanday bo'lishi mumkin, chunki u faqat logarifm qiymati.

Ikkinchi formula aslida tarjima qilingan ta'rifdir. Bu shunday deyiladi: .

Aslida, agar b soni shunday darajaga ko'tarilsa nima bo'ladi, bu darajaga b soni a sonini beradi? To'g'ri: natija bir xil raqam a. Ushbu xatboshini yana diqqat bilan o'qing - ko'p odamlar unga yopishib qolishadi.

Yangi bazaga o'tish uchun formulalar singari, asosiy logarifmik identifikatsiya ba'zan yagona mumkin bo'lgan yechimdir.

Vazifa. Ifodaning ma'nosini toping:

E'tibor bering, log25 64 = log5 8 - oddiygina logarifmning asosi va argumentidan kvadrat oldi. Quvvatlarni bir xil asos bilan ko'paytirish qoidalarini hisobga olgan holda, biz quyidagilarni olamiz:

Agar kimdir bilmasa, bu yagona davlat imtihonidan olingan haqiqiy vazifa edi :)

Logarifmik birlik va logarifmik nol

Xulosa qilib aytganda, men xususiyatlar deb atash qiyin bo'lgan ikkita identifikatsiyani beraman - aksincha, ular logarifm ta'rifining oqibatlari. Ular doimo muammolarda paydo bo'ladi va ajablanarlisi shundaki, hatto "ilg'or" talabalar uchun ham muammolarni keltirib chiqaradi.

  1. logaa = 1. Bir marta va umuman esda tuting: bu asosning har qanday a asosining logarifmi o'zi bittaga teng.
  2. loga 1 = 0. a asosi har qanday bo'lishi mumkin, lekin agar argument bitta bo'lsa, logarifm nolga teng! Chunki a0 = 1 ta'rifning bevosita natijasidir.

Bu barcha xususiyatlar. Ularni amalda qo'llashni mashq qiling! Dars boshida cheat varaqini yuklab oling, uni chop eting va muammolarni hal qiling.

Shuningdek qarang:

b ning a asosi logarifmi ifodani bildiradi. Logarifmni hisoblash tenglik bajariladigan x () kuchini topishni anglatadi

Logarifmning asosiy xossalari

Yuqoridagi xususiyatlarni bilish kerak, chunki logarifmlarga oid deyarli barcha masalalar va misollar ular asosida hal qilinadi. Qolgan ekzotik xususiyatlarni ushbu formulalar bilan matematik manipulyatsiyalar orqali olish mumkin

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Logarifmlarning yig'indisi va ayirmasining formulasini hisoblashda (3.4) siz tez-tez uchrab turasiz. Qolganlari biroz murakkab, ammo bir qator vazifalarda ular murakkab ifodalarni soddalashtirish va ularning qiymatlarini hisoblash uchun ajralmas hisoblanadi.

Logarifmlarning umumiy holatlari

Ba'zi umumiy logarifmlar asosi hatto o'n, eksponensial yoki ikkita bo'lgan logarifmlardir.
O'nlik bazaga logarifm odatda o'nlik logarifm deb ataladi va oddiygina lg (x) bilan belgilanadi.

Yozuvdan ko'rinib turibdiki, yozuvda asoslar yozilmagan. Misol uchun

Natural logarifm asosi darajali (ln(x) bilan belgilanadi) logarifmdir.

Ko‘rsatkich 2,718281828…. Ko'rsatkichni eslab qolish uchun siz qoidani o'rganishingiz mumkin: ko'rsatkich 2,7 ga teng va Leo Nikolaevich Tolstoyning tug'ilgan yilidan ikki marta. Ushbu qoidani bilib, siz eksponentning aniq qiymatini ham, Lev Tolstoyning tug'ilgan sanasini ham bilib olasiz.

Va ikkita asos uchun yana bir muhim logarifm bilan belgilanadi

Funktsiya logarifmining hosilasi o'zgaruvchiga bo'linganga teng

Integral yoki antiderivativ logarifm munosabat bilan aniqlanadi

Berilgan material logarifmlar va logarifmlar bilan bog'liq keng ko'lamli masalalarni hal qilish uchun etarli. Materialni tushunishingizga yordam berish uchun men maktab o'quv dasturi va universitetlardan bir nechta umumiy misollarni keltiraman.

Logarifmlar uchun misollar

Logarifm ifodalari

1-misol.
A). x=10ac^2 (a>0,c>0).

3.5 xossalaridan foydalanib hisoblaymiz

2.
Logarifmlarning ayirma xossasi bo'yicha bizda mavjud

3.
3.5 xossalaridan foydalanib topamiz

4. Qayerda .

Ko'rinishidan murakkab ko'rinadigan ibora bir qator qoidalar yordamida shakllanish uchun soddalashtiriladi

Logarifm qiymatlarini topish

2-misol. x if ni toping

Yechim. Hisoblash uchun biz oxirgi muddat 5 va 13 xususiyatlariga murojaat qilamiz

Biz buni yozuvga qo'yamiz va motam tutamiz

Asoslar teng bo'lgani uchun biz ifodalarni tenglashtiramiz

Logarifmlar. Birinchi daraja.

Logarifmlarning qiymati berilsin

Agar log(x) ni hisoblang

Yechish: Logarifmni hadlari yig‘indisi orqali yozish uchun o‘zgaruvchining logarifmini olaylik.


Bu logarifmlar va ularning xossalari bilan tanishishimizning boshlanishi. Hisob-kitoblarni mashq qiling, amaliy ko'nikmalaringizni boyiting - tez orada logarifmik tenglamalarni yechish uchun olgan bilimlaringiz kerak bo'ladi. Bunday tenglamalarni yechishning asosiy usullarini o'rganib chiqib, biz sizning bilimingizni yana bir muhim mavzuga - logarifmik tengsizliklarga kengaytiramiz...

Logarifmlarning asosiy xossalari

Logarifmlar, har qanday raqamlar kabi, har qanday usulda qo'shilishi, ayirilishi va o'zgartirilishi mumkin. Ammo logarifmlar oddiy sonlar emasligi sababli, bu erda qoidalar mavjud, ular chaqiriladi asosiy xususiyatlar.

Siz, albatta, ushbu qoidalarni bilishingiz kerak - ularsiz biron bir jiddiy logarifmik muammoni hal qilib bo'lmaydi. Bundan tashqari, ularning juda ozchiligi bor - siz bir kunda hamma narsani o'rganishingiz mumkin. Shunday qilib, keling, boshlaylik.

Logarifmlarni qo‘shish va ayirish

Bir xil asoslarga ega ikkita logarifmni ko'rib chiqing: logax va logay. Keyin ularni qo'shish va ayirish mumkin, va:

  1. logax + logay = loga(x y);
  2. logax - logay = loga (x: y).

Demak, logarifmlar yig‘indisi ko‘paytmaning logarifmiga, ayirmasi esa bo‘linmaning logarifmiga teng. Iltimos, diqqat qiling: bu erda asosiy nuqta bir xil asoslar. Agar sabablar boshqacha bo'lsa, bu qoidalar ishlamaydi!

Ushbu formulalar, hatto uning alohida qismlari hisobga olinmasa ham, logarifmik ifodani hisoblashda yordam beradi ("Logarifm nima" darsiga qarang). Misollarni ko'rib chiqing va qarang:

Vazifa. Ifodaning qiymatini toping: log6 4 + log6 9.

Logarifmlar bir xil asoslarga ega bo'lgani uchun biz yig'indi formulasidan foydalanamiz:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Vazifa. Ifodaning qiymatini toping: log2 48 − log2 3.

Asoslar bir xil, biz farq formulasidan foydalanamiz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Vazifa. Ifodaning qiymatini toping: log3 135 − log3 5.

Yana asoslar bir xil, shuning uchun bizda:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Ko'rib turganingizdek, asl iboralar "yomon" logarifmlardan iborat bo'lib, ular alohida hisoblanmaydi. Ammo transformatsiyalardan so'ng butunlay normal raqamlar olinadi. Ko'pgina testlar ushbu faktga asoslanadi. Ha, testga o'xshash iboralar Yagona davlat imtihonida barcha jiddiylik bilan (ba'zida deyarli o'zgarishlarsiz) taklif etiladi.

Logarifmadan ko'rsatkichni chiqarish

Endi vazifani biroz murakkablashtiramiz. Agar logarifmning asosi yoki argumenti kuch bo'lsa-chi? Keyin ushbu daraja ko'rsatkichini quyidagi qoidalarga muvofiq logarifm belgisidan chiqarish mumkin:

Oxirgi qoida birinchi ikkitasiga amal qilishini ko'rish oson. Ammo baribir buni eslab qolish yaxshiroqdir - ba'zi hollarda bu hisob-kitoblar miqdorini sezilarli darajada kamaytiradi.

Albatta, bu qoidalarning barchasi logarifmning ODZi kuzatilsa, mantiqiy bo'ladi: a > 0, a ≠ 1, x > 0. Va yana bir narsa: barcha formulalarni nafaqat chapdan o'ngga, balki aksincha qo'llashni o'rganing. , ya'ni. Logarifmning o'ziga logarifm belgisidan oldingi raqamlarni kiritishingiz mumkin.

Logarifmlarni qanday yechish mumkin

Bu eng ko'p talab qilinadigan narsa.

Vazifa. Ifodaning qiymatini toping: log7 496.

Keling, birinchi formuladan foydalanib, argumentdagi darajadan xalos bo'laylik:
log7 496 = 6 log7 49 = 6 2 = 12

Vazifa. Ifodaning ma'nosini toping:

E'tibor bering, maxraj logarifmadan iborat bo'lib, uning asosi va argumenti aniq darajalardir: 16 = 24; 49 = 72. Bizda:

O'ylaymanki, oxirgi misol biroz tushuntirishni talab qiladi. Logarifmlar qayerga ketdi? Biz oxirgi daqiqagacha faqat maxraj bilan ishlaymiz. Biz u erda turgan logarifmning asosini va argumentini kuchlar shaklida taqdim etdik va ko'rsatkichlarni olib tashladik - biz "uch qavatli" kasrni oldik.

Endi asosiy kasrni ko'rib chiqaylik. Numerator va maxraj bir xil sonni o'z ichiga oladi: log2 7. log2 7 ≠ 0 bo'lgani uchun biz kasrni kamaytirishimiz mumkin - 2/4 maxrajda qoladi. Arifmetika qoidalariga ko'ra, to'rttani hisoblagichga o'tkazish mumkin, bu bajarilgan. Natijada javob bo'ldi: 2.

Yangi poydevorga o'tish

Logarifmlarni qo'shish va ayirish qoidalari haqida gapirganda, ular faqat bir xil asoslar bilan ishlashini alohida ta'kidladim. Agar sabablar boshqacha bo'lsa-chi? Agar ular bir xil sonning aniq kuchlari bo'lmasa-chi?

Yangi poydevorga o'tish uchun formulalar yordamga keladi. Keling, ularni teorema shaklida tuzamiz:

Logarifmning logaksi berilgan bo'lsin. U holda c > 0 va c ≠ 1 bo'lgan har qanday c soni uchun tenglik to'g'ri bo'ladi:

Xususan, agar c = x o'rnatsak, biz quyidagilarni olamiz:

Ikkinchi formuladan kelib chiqadiki, logarifmning asosi va argumenti almashtirilishi mumkin, ammo bu holda butun ifoda "aylantiriladi", ya'ni. logarifm maxrajda ko'rinadi.

Bu formulalar oddiy sonli ifodalarda kam uchraydi. Ular qanchalik qulay ekanligini faqat logarifmik tenglamalar va tengsizliklarni yechishdagina baholash mumkin.

Biroq, yangi poydevorga o'tishdan tashqari, umuman hal qilib bo'lmaydigan muammolar mavjud. Keling, ulardan bir nechtasini ko'rib chiqaylik:

Vazifa. Ifodaning qiymatini toping: log5 16 log2 25.

E'tibor bering, ikkala logarifmning argumentlari aniq kuchlarni o'z ichiga oladi. Keling, ko'rsatkichlarni chiqaramiz: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Endi ikkinchi logarifmni “teskari” qilaylik:

Faktorlarni qayta tartibga solishda mahsulot o'zgarmasligi sababli, biz xotirjamlik bilan to'rt va ikkitani ko'paytirdik va keyin logarifmlar bilan ishladik.

Vazifa. Ifodaning qiymatini toping: log9 100 lg 3.

Birinchi logarifmning asosi va argumenti aniq kuchlardir. Keling, buni yozamiz va ko'rsatkichlardan xalos bo'laylik:

Endi yangi bazaga o'tish orqali o'nlik logarifmdan xalos bo'laylik:

Asosiy logarifmik identifikatsiya

Ko'pincha yechim jarayonida raqamni berilgan asosga logarifm sifatida ko'rsatish kerak bo'ladi. Bunday holda, quyidagi formulalar bizga yordam beradi:

Birinchi holda, n soni argumentda ko'rsatkichga aylanadi. n soni mutlaqo har qanday bo'lishi mumkin, chunki u faqat logarifm qiymati.

Ikkinchi formula aslida tarjima qilingan ta'rifdir. Bu shunday deyiladi: .

Aslida, agar b soni shunday darajaga ko'tarilsa nima bo'ladi, bu darajaga b soni a sonini beradi? To'g'ri: natija bir xil raqam a. Ushbu xatboshini yana diqqat bilan o'qing - ko'p odamlar unga yopishib qolishadi.

Yangi bazaga o'tish uchun formulalar singari, asosiy logarifmik identifikatsiya ba'zan yagona mumkin bo'lgan yechimdir.

Vazifa. Ifodaning ma'nosini toping:

E'tibor bering, log25 64 = log5 8 - oddiygina logarifmning asosi va argumentidan kvadrat oldi. Quvvatlarni bir xil asos bilan ko'paytirish qoidalarini hisobga olgan holda, biz quyidagilarni olamiz:

Agar kimdir bilmasa, bu yagona davlat imtihonidan olingan haqiqiy vazifa edi :)

Logarifmik birlik va logarifmik nol

Xulosa qilib aytganda, men xususiyatlar deb atash qiyin bo'lgan ikkita identifikatsiyani beraman - aksincha, ular logarifm ta'rifining oqibatlari. Ular doimo muammolarda paydo bo'ladi va ajablanarlisi shundaki, hatto "ilg'or" talabalar uchun ham muammolarni keltirib chiqaradi.

  1. logaa = 1. Bir marta va umuman esda tuting: bu asosning har qanday a asosining logarifmi o'zi bittaga teng.
  2. loga 1 = 0. a asosi har qanday bo'lishi mumkin, lekin agar argument bitta bo'lsa, logarifm nolga teng! Chunki a0 = 1 ta'rifning bevosita natijasidir.

Bu barcha xususiyatlar. Ularni amalda qo'llashni mashq qiling! Dars boshida cheat varaqini yuklab oling, uni chop eting va muammolarni hal qiling.

    dan boshlaylik bir logarifmining xossalari. Uning formulasi quyidagicha: birlikning logarifmi nolga teng, ya'ni log a 1=0 har qanday a>0, a≠1 uchun. Isbot qilish qiyin emas: a>0 va a≠1 yuqoridagi shartlarni qanoatlantiradigan har qanday a uchun 0 =1 bo‘lganligi sababli, isbotlanishi kerak bo‘lgan log a 1=0 tenglik logarifm ta’rifidan darhol kelib chiqadi.

    Ko'rib chiqilayotgan xossaning qo'llanilishiga misollar keltiramiz: log 3 1=0, log1=0 va .

    Keling, keyingi mulkka o'tamiz: asosiga teng sonning logarifmi birga teng, ya'ni, log a a=1 a>0, a≠1 uchun. Haqiqatan ham, har qanday a uchun a 1 =a bo'lganligi sababli, logarifm ta'rifiga ko'ra log a a=1 bo'ladi.

    Logarifmlarning bu xossasidan foydalanishga misol qilib log 5 5=1, log 5,6 5,6 va lne=1 tengliklarini keltirish mumkin.

    Masalan, log 2 2 7 =7, log10 -4 =-4 va .

    Ikki musbat sonning ko'paytmasining logarifmi x va y bu raqamlarning logarifmlarining ko'paytmasiga teng: log a (x y)=log a x+log a y, a>0, a≠1. Mahsulot logarifmining xossasini isbotlaylik. Darajaning xususiyatlari tufayli a log a x+log a y =a log a x ·a log a y, va asosiy logarifmik identifikatsiya bo'yicha log a x =x va log a y =y bo'lganligi sababli, log a x ·a log a y =x·y bo'ladi. Shunday qilib, log a x+log a y =x·y, undan logarifma ta’rifi bilan isbotlanayotgan tenglik kelib chiqadi.

    Mahsulot logarifmi xossasidan foydalanish misollarini ko‘rsatamiz: log 5 (2 3)=log 5 2+log 5 3 va .

    Mahsulot logarifmining xossasini x 1 , x 2 , …, x n musbat sonlarning chekli n sonining mahsulotiga umumlashtirish mumkin. log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Bu tenglikni muammosiz isbotlash mumkin.

    Misol uchun, mahsulotning natural logarifmini 4, e va raqamlarining uchta natural logarifmi yig'indisi bilan almashtirish mumkin.

    Ikki musbat sonning bo'limining logarifmi x va y bu sonlarning logarifmlari orasidagi farqga teng. Bo'lim logarifmining xossasi a>0, a≠1, x va y ba'zi musbat sonlar bo'lgan shakldagi formulaga mos keladi. Ushbu formulaning to'g'riligi mahsulotning logarifmi formulasi kabi isbotlangan: beri , keyin logarifm ta'rifi bilan.

    Logarifmning ushbu xususiyatidan foydalanishga misol: .

    Keling, davom etaylik kuch logarifmining xossasi. Darajaning logarifmi ko'rsatkichning ko'paytmasiga va ushbu daraja asosining modulining logarifmiga teng. Bir daraja logarifmining bu xossasini formula sifatida yozamiz: log a b p =p·log a |b|, bu yerda a>0, a≠1, b va p shunday raqamlarki, b p darajasi mantiqiy va b p >0.

    Avval bu xususiyatni ijobiy b uchun isbotlaymiz. Asosiy logarifmik identifikatsiya bizga b sonini log a b, so'ngra b p =(a log a b) p ko'rinishida ko'rsatishga imkon beradi va natijada paydo bo'lgan ifoda, kuch xususiyatiga ko'ra, p·log a b ga teng bo'ladi. Shunday qilib, biz b p =a p·log a b tengligiga kelamiz, undan logarifm ta'rifi bilan log a b p =p·log a b degan xulosaga kelamiz.

    Bu xususiyatni salbiy b uchun isbotlash uchun qoladi. Bu yerda manfiy b uchun log a b p ifodasi faqat p darajali ko‘rsatkichlar uchun mantiqiy ekanligini ta’kidlaymiz (chunki b p darajaning qiymati noldan katta bo‘lishi kerak, aks holda logarifm ma’noga ega bo‘lmaydi) va bu holda b p =|b| p. Keyin b p =|b| p =(a log a |b|) p =a p·log a |b|, qaerdan log a b p =p·log a |b| .

    Masalan, va ln(-3) 4 =4·ln|-3|=4·ln3 .

    Bu avvalgi mulkdan kelib chiqadi ildizdan logarifmning xossasi: n- ildizning logarifmi 1/n kasrning radikal ifoda logarifmiga ko‘paytmasiga teng, ya’ni: , bu yerda a>0, a≠1, n birdan katta natural son, b>0.

    Isbot har qanday musbat b uchun amal qiladigan tenglikka (qarang) va kuchning logarifmi xossasiga asoslanadi: .

    Bu xususiyatdan foydalanishga misol: .

    Endi isbot qilaylik yangi logarifm bazasiga o'tish formulasi mehribon . Buning uchun tenglik log c b=log a b·log c a ning haqiqiyligini isbotlash kifoya. Asosiy logarifmik identifikatsiya bizga b raqamini log a b, keyin log c b=log c a log a b ko'rinishida ko'rsatishga imkon beradi. Darajaning logarifmi xususiyatidan foydalanish qoladi: log c a log a b =log a b log c a. Bu log c b=log a b·log c a tengligini isbotlaydi, ya'ni logarifmning yangi bazasiga o'tish formulasi ham isbotlangan.

    Keling, logarifmlarning ushbu xususiyatidan foydalanishga bir nechta misollarni ko'rsatamiz: va .

    Yangi bazaga o'tish formulasi sizga "qulay" asosga ega bo'lgan logarifmlar bilan ishlashga o'tish imkonini beradi. Misol uchun, u natural yoki o'nlik logarifmlarga o'tish uchun ishlatilishi mumkin, shunda siz logarifmalar jadvalidan logarifmaning qiymatini hisoblashingiz mumkin. Yangi logarifm bazasiga o'tish formulasi, shuningdek, ba'zi hollarda, ba'zi logarifmlarning boshqa asoslar bilan qiymatlari ma'lum bo'lganda, berilgan logarifmning qiymatini topishga imkon beradi.

    Ko'pincha shaklning c=b uchun yangi logarifm bazasiga o'tish formulasining maxsus holati qo'llaniladi . Bu log a b va log b a – ekanligini ko'rsatadi. Masalan, .

    Formula ham tez-tez ishlatiladi , bu logarifm qiymatlarini topish uchun qulay. Bizning so'zlarimizni tasdiqlash uchun biz undan qanday qilib logarifma shaklini hisoblashda foydalanish mumkinligini ko'rsatamiz. Bizda ... bor . Formulani isbotlash uchun a logarifmining yangi bazasiga o'tish uchun formuladan foydalanish kifoya: .

    Logarifmlarni solishtirish xususiyatlarini isbotlash qoladi.

    Har qanday musbat sonlar uchun b 1 va b 2, b 1 ekanligini isbotlaylik log a b 2, a>1 uchun esa – tengsizlik log a b 1

    Va nihoyat, logarifmlarning oxirgi sanab o'tilgan xususiyatlarini isbotlash qoladi. Keling, uning birinchi qismini isbotlash bilan cheklanamiz, ya'ni a 1 >1, a 2 >1 va 1 bo'lishini isbotlaymiz. 1 rost log a 1 b>log a 2 b . Logarifmlarning ushbu xossasining qolgan bayonotlari shunga o'xshash printsip bo'yicha isbotlangan.

    Keling, qarama-qarshi usuldan foydalanamiz. Faraz qilaylik, 1 >1, 2 >1 va 1 uchun 1 haqiqiy log a 1 b≤log a 2 b. Logarifmlarning xossalariga asoslanib, bu tengsizliklarni quyidagicha qayta yozish mumkin Va mos ravishda va ulardan log b a 1 ≤log b a 2 va log b a 1 ≥log b a 2 ekanligi kelib chiqadi. Keyin bir xil asosli darajalar xossalariga ko'ra, b log b a 1 ≥b log b a 2 va b log b a 1 ≥b log b a 2 tengliklari, ya'ni a 1 ≥a 2 bo'lishi kerak. Shunday qilib, biz a 1 shartiga qarama-qarshilikka keldik

Adabiyotlar ro'yxati.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. va boshqalar: “Algebra va tahlilning boshlanishi: Umumta’lim muassasalarining 10-11-sinflari uchun darslik.
  • Gusev V.A., Mordkovich A.G. Matematika (texnika maktablariga kiruvchilar uchun qo'llanma).

Logarifmlarning qiymatlarini yoki logarifmning qiymatini ma'lum bir raqam bilan taqqoslash maktab muammosini hal qilish amaliyotida nafaqat mustaqil vazifa sifatida uchraydi. Masalan, tenglamalar va tengsizliklarni yechishda logarifmlarni solishtirish kerak. Maqolaning materiallari (muammolar va ularning echimlari) "oddiydan murakkabga" tamoyili bo'yicha joylashtirilgan va ushbu mavzu bo'yicha darsni (darslarni) tayyorlash va o'tkazish uchun, shuningdek, tanlov darslarida foydalanish mumkin. Darsda ko'rib chiqiladigan vazifalar soni sinf darajasiga va uning ixtisoslashgan sohasiga bog'liq. Murakkab matematika darslarida ushbu materialdan ikki soatlik ma’ruza darsida foydalanish mumkin.

1. (Og'zaki.) Funktsiyalarning qaysi biri ortib, qaysi biri kamaymoqda:

Izoh. Ushbu mashq tayyorgarlik mashg'ulotidir.

2. (Og'zaki.)Nol bilan solishtiring:

Izoh. 2-mashqni yechishda logarifmik funktsiyaning grafigidan foydalanib, logarifmik funksiyaning ikkala xossasidan ham, quyidagilardan ham foydalanish mumkin. foydali mulk:

agar a va b musbat sonlar son chizig‘ida 1 ning o‘ng tomonida yoki 1 ning chap tomonida joylashgan bo‘lsa (ya’ni a>1 va b>1 yoki 0) 0 ;
agar a va b musbat sonlar sonlar chizig‘ida 1 ning qarama-qarshi tomonida joylashgan bo‘lsa (ya’ni 0 .

Keling, ushbu xususiyatdan foydalanishni ko'rsatamiz 2(a)-sonli qarorida.

Funktsiyadan beri y = log 7 t tomonidan ortadi R+, 10 > 7, keyin log 7 10 > log 7 7, ya'ni log 7 10 > 1. Shunday qilib, sin3 va log 7 10 musbat sonlar 1 ning qarama-qarshi tomonlarida yotadi. Shuning uchun log sin3 log 7 10.< 0.

3. (Og'zaki.) Fikrlashdagi xatoni toping:

Funktsiya y = lgt keyin R + ga ortadi ,

Oxirgi tengsizlikning ikkala tomonini ga ajratamiz. Biz 2 > 3 ni olamiz.

Yechim.

Musbat sonlar va 10 (logarifm asosi) 1 ning qarama-qarshi tomonlarida yotadi. Bu shuni anglatadiki,< 0. При делении обеих частей неравенства на число знак неравенства следует изменить на противоположный.

4. (Og'zaki.) Raqamlarni solishtiring:

Izoh. No 4(a–c) mashqlarni yechishda logarifmik funksiyaning monotonlik xususiyatidan foydalanamiz. № 4(d) yechim uchun biz quyidagi xususiyatdan foydalanamiz:

c > a >1 bo'lsa, b>1 uchun log a b > log c b tengsizlik to'g'ri bo'ladi.

Yechim 4(d).

1 yildan beri< 5 < 7 и 13 >1, keyin log 5 13 > log 7 13.

5. Raqamlarni solishtiring log 2 6 va 2.

Yechim.

Birinchi yo'l (logarifmik funktsiyaning monotonligidan foydalangan holda).

Funktsiya y = log 2 t tomonidan ortadi R+, 6 > 4. Shunday qilib, log 2 6 > log 2 4 Va log 2 5 > 2.

Ikkinchi usul (farqni tuzish).

Keling, farqni tuzamiz.

6. Raqamlarni solishtiring Va -1.

Funktsiya y= tomonidan kamayadi R+ , 3 < 5. Значит, >Va > -1 .

7. Raqamlarni solishtiring Va 3log 8 26 .

Funktsiya y = log 2 t tomonidan ortadi R+, 25 < 26. Значит, log 2 25 < log 2 26 и.

Birinchi yo'l.

Tengsizlikning ikkala tomonini 3 ga ko'paytiramiz:

Funktsiya y = log 5 t tomonidan ortadi R+ , 27 > 25. Shunday qilib,

Ikkinchi yo'l.

Keling, farqni tuzamiz
. Bu yerdan.

9. Log 4 26 sonlarini solishtiring Va jurnal 6 17.

y = log 4 t va y = log 6 t funktsiyalari ga ortib borishini hisobga olib, logarifmlarni baholaylik. R+:

Funktsiyalarni hisobga olgan holda tomonidan kamayadi R+, bizda ... bor:

Ma'nosi,

Izoh. Taklif etilayotgan taqqoslash usuli deyiladi "qo'shish" usuli yoki "ajratish" usuli(bu ikki raqamni ajratib turgan 4 raqamini topdik).

11. Jurnal 2 3 sonlarini solishtiring Va jurnal 3 5.

E'tibor bering, ikkala logarifm ham 1 dan katta, lekin 2 dan kichik.

Birinchi yo'l. Keling, "ajralish" usulidan foydalanishga harakat qilaylik. Logarifmlarni son bilan solishtiramiz.

Ikkinchi usul ( natural songa ko'paytirish).

Eslatma 1. Mohiyat usulinatural songa ko'paytirish” bu biz natural sonni qidirmoqdamiz k, ko'paytirilganda qaysi taqqoslangan raqamlar a Va b bu raqamlarni oling ka Va Kb ular orasida kamida bitta butun son mavjudligi.

Eslatma 2. Yuqoridagi usulni amalga oshirish, agar taqqoslanayotgan raqamlar bir-biriga juda yaqin bo'lsa, juda ko'p mehnat talab qilishi mumkin.
Bunday holda siz taqqoslashni sinab ko'rishingiz mumkin "birini ayirish" usuli" Keling, buni quyidagi misolda ko'rsatamiz.

12. Log 7 8 sonlarini solishtiring Va jurnal 6 7.

Birinchi yo'l (birini ayirish).

Taqqoslanayotgan raqamlardan 1 ni ayiring.

Birinchi tengsizlikda biz bu faktdan foydalandik

c > a > 1 bo'lsa, b > 1 uchun log a b > log c b tengsizlik to'g'ri bo'ladi.

Ikkinchi tengsizlikda – y = log a x funksiyaning monotonligi.

Ikkinchi yo'l (Koshi tengsizligini qo'llash).

13. Jurnal 24 72 sonlarini solishtiring Va jurnal 12 18.

14. Log 20 80 sonlarini solishtiring Va jurnal 80 640.

log 2 5 = bo'lsin x. e'tibor bering, bu x > 0.

Biz tengsizlikka erishamiz.

Keling, tengsizlikning ko'plab echimlarini topaylik, x > shartini qanoatlantiradi 0.

Keling, tengsizlikning ikkala tomonini quraylik kvadrat (da x> 0 tengsizlikning ikkala tomoni ham ijobiy). Bizda 9x2 bor< 9x + 28.

Oxirgi tengsizlikning yechimlari to'plami intervaldir.

Shuni hisobga olib x> 0, biz olamiz: .

Javob: Tengsizlik haqiqatdir.

Muammoni hal qilish bo'yicha seminar.

1. Raqamlarni solishtiring:

2. Raqamlarni o‘sish tartibida joylashtiring:

3. Tengsizlikni yeching 4 4 – 2 2 4+1 – 3< 0 . Raqam √2 bu tengsizlikning yechimi? (Javob:(–∞; log 2 3) ; raqam √2 bu tengsizlikning yechimidir.)

Xulosa.

Logarifmlarni solishtirishning ko'plab usullari mavjud. Ushbu mavzu bo'yicha darslarning maqsadi - turli xil usullarda harakat qilishni, har bir aniq vaziyatda eng oqilona echimni tanlash va qo'llashni o'rgatish.

Matematikani chuqur o'rganadigan sinflarda ushbu mavzu bo'yicha materiallar ma'ruza shaklida taqdim etilishi mumkin. O'quv faoliyatining bu shakli ma'ruza materialini diqqat bilan tanlash, ishlab chiqish va ma'lum bir mantiqiy ketma-ketlikda joylashtirishni nazarda tutadi. O'qituvchi doskada yozadigan eslatmalar o'ylangan va matematik jihatdan aniq bo'lishi kerak.

Amaliy mashg'ulotlarda ma'ruza materialini birlashtirish va muammoni hal qilish ko'nikmalarini mashq qilish maqsadga muvofiqdir. Seminarning maqsadi nafaqat olingan bilimlarni mustahkamlash va sinab ko'rish, balki uni kengaytirishdir. Shuning uchun vazifalar turli darajadagi vazifalarni o'z ichiga olishi kerak, eng oddiy vazifalardan tortib, murakkablik darajasi yuqori bo'lgan vazifalargacha. Bunday seminarlarda o'qituvchi maslahatchi vazifasini bajaradi.

Adabiyot.

  1. Galitskiy M.L. va boshqalar algebra va matematik tahlil kursini chuqur o'rganish. Tavsiyalar va o'quv materiallari: O'qituvchilar uchun qo'llanma - M.: Ta'lim, 1986.
  2. Ziv B.G., Goldich V.A. 10-sinf uchun algebra va asosiy tahlil bo'yicha didaktik materiallar. - Sankt-Peterburg: "CheRo-on-Neva", 2003 yil.
  3. Litvinenko V.N., Mordkovich A.G. Boshlang'ich matematika bo'yicha seminar. Algebra. Trigonometriya: O'quv nashri. – M.: Ta’lim, 1990 yil.
  4. Ryazanovskiy A.R. Algebra va tahlilning boshlanishi: maktab o'quvchilari va oliy o'quv yurtlariga kiruvchilar uchun matematika bo'yicha muammolarni hal qilishning 500 usuli va usullari. - M.: Bustard, 2001 yil.
  5. Sadovnichy Yu.V. Matematika. Yechimlari bilan algebra bo'yicha raqobat masalalari. 4-qism.Logarifmik tenglamalar, tengsizliklar, sistemalar. Darslik.-3-nashr, ster.-M.: UNTsDO nashriyot boʻlimi, 2003 y.
  6. Sharygin I.F., Golubev V.I. Matematikadan fakultativ kurs: Masalalar yechish: Prok. 11-sinf uchun nafaqa. o'rta maktab - M.: Prosveshchenie, 1991 yil.

Savol bo'limida logarifmlarni qachon solishtirish mumkin....(+)? muallif tomonidan berilgan Elakdan o'tkazing eng yaxshi javob Yoki uni bitta asosga qisqartirolmaysiz, lekin logarifmik funktsiyaning xususiyatlaridan foydalaning.
Agar logarifmik funktsiyaning asosi 1 dan katta bo'lsa, u holda funktsiya ortadi va x > 1 bo'lganda, baza qanchalik kichik bo'lsa, grafik yuqorida joylashgan bo'ladi,
0 uchun< x < 1 чем меньше основание, тем график ниже.
Agar logarifmning asosi noldan katta va 1 dan kichik bo'lsa, u holda funktsiya kamayadi,
Bundan tashqari, x > 1 uchun asos qanchalik kichik bo'lsa, grafik shunchalik yuqori bo'ladi,
0 uchun< x < 1 чем меньше основание, тем график ниже.
Bu shunday bo'ladi:

dan javob oriq[guru]
Logarifmlarni bir xil asosga (masalan, natural songa) qisqartiring va keyin solishtiring.
1. a=Ln(16)/Ln(7); b=Ln(16)/Ln(3); b>a;
2. a=-Ln(16)/Ln(7); b=-Ln(16)/Ln(3); a>b;
3. a=-Ln(16)/Ln(7); b=-Ln(16)/Ln(3); a>b;
4. a=Ln(16)/Ln(7); b=Ln(16)/Ln(3); b>a.


dan javob Neyropatolog[guru]
Yangi bazaga o'tish uchun formuladan foydalaning: log(a)b=1/log(b)a.
Keyin bir xil asosli logarifm kabi kasrlarning maxrajlarini solishtiring.
Numeratorlari bir xil bo'lgan ikkita kasrdan kichikroq maxrajli kasr kattaroqdir.
Masalan, log(7)16 va log(3)16
1/log(16)7 va 1/log(16)3
log(16)7>log(16)3 ekan, keyin 1/log(16)7< 1/log(16)3.

Shunga o'xshash maqolalar