Определение, формула, свойства. Что такое мышьяк? Характеристика, свойства и применение Мышьяк в периодической системе менделеева

Мышьяк - химический элемент группы азота (группа 15 таблицы Менделеева). Это серое с металлическим блеском хрупкое вещество (α-мышьяк) с ромбоэдрической кристаллической решеткой. При нагревании до 600°C As сублимирует. При охлаждении паров возникает новая модификация — желтый мышьяк. Выше 270°C все формы As переходят в черный мышьяк.

История открытия

О том, что такое мышьяк, было известно задолго до признания его химическим элементом. В IV в. до н. э. Аристотель упоминал о веществе под названием «сандарак», которое, как теперь полагают, было реальгаром, или сульфидом мышьяка. А в I веке н. э. писатели Плиний старший и Педаний Диоскорид описывали аурипигмент - краситель As 2 S 3 . В XI в. н. э. различались три разновидности «мышьяка»: белый (As 4 O 6), желтый (As 2 S 3) и красный (As 4 S 4). Сам элемент, вероятно, впервые был выделен в XIII веке Альбертом Великим, который отметил появление металлоподобного вещества, когда арсеникум, другое название As 2 S 3 , был нагрет с мылом. Но уверенности в том, что этот ученый-естествоиспытатель получил чистый мышьяк, нет. Первое подлинное свидетельство о выделении чистого датировано 1649 годом. Немецкий фармацевт Иоганн Шредер приготовил мышьяк, нагревая его оксид в присутствии угля. Позже Никола Лемери, французский врач и химик, наблюдал образование этого химического элемента при нагревании смеси его оксида, мыла и поташа. К началу XVIII века мышьяк уже был известен и как уникальный полуметалл.

Распространенность

В земной коре концентрация мышьяка невелика и составляет 1,5 промилле. Он встречается в почве и минералах и может попасть в воздух, воду и грунт благодаря ветровой и водной эрозии. Кроме того, элемент поступает в атмосферу из других источников. В результате извержения вулканов в воздух выделяется около 3 тыс. т мышьяка в год, микроорганизмы образуют 20 тыс. т летучего метиларсина в год, а в результате сжигания ископаемого топлива за тот же период выделяется 80 тыс. т.

Несмотря на то что As - смертельный яд, он является важной составляющей питания некоторых животных и, возможно, человека, хотя необходимая доза не превышает 0,01 мг/сутки.

Мышьяк крайне трудно перевести в водорастворимое или летучее состояние. Тот факт, что он довольно мобилен, означает, что большие концентрации вещества в каком-то одном месте появиться не могут. С одной стороны, это хорошо, но с другой - легкость, с которой он распространяется, является причиной того, что загрязнение мышьяком становится все большей проблемой. Из-за деятельности человека, в основном за счет добычи и плавки, обычно немобильный химический элемент мигрирует, и сейчас его можно найти не только в местах его естественной концентрации.

Количество мышьяка в земной коре составляет около 5 г на тонну. В космосе его концентрация оценивается как 4 атома на миллион атомов кремния. Этот элемент широко распространен. Небольшое его количество присутствует в самородном состоянии. Как правило, образования мышьяка чистотой 90-98% встречаются вместе с такими металлами, как сурьма и серебро. Большая его часть, однако, входит в состав более чем 150 различных минералов - сульфидов, арсенидов, сульфоарсенидов и арсенитов. Арсенопирит FeAsS является одним из самых распространенных As-содержащих минералов. Другие распространенные соединения мышьяка - минералы реальгар As 4 S 4, аурипигмент As 2 S 3, леллингит FeAs 2 и энаргит Cu 3 AsS 4 . Также часто встречается оксид мышьяка. Большая часть этого вещества является побочным продуктом выплавки медных, свинцовых, кобальтовых и золотых руд.

В природе существует только один стабильный изотоп мышьяка - 75 As. Среди искусственных радиоактивных изотопов выделяется 76 As c периодом полураспада 26,4 ч. Мышьяк-72, -74 и -76 используются в медицинской диагностике.

Промышленное производство и применение

Металлический мышьяк получают при нагреве арсенопирита до 650-700 °C без доступа воздуха. Если же арсенопирит и другие металлические руды нагревать с кислородом, то As легко вступает с ним в соединение, образуя легко возгоняемый As 4 O 6 , также известный как «белый мышьяк». Пары оксида собирают и конденсируют, и позже очищают повторной возгонкой. Большая часть As производится путем его восстановления углеродом из белого мышьяка, полученного таким образом.

Мировое потребление металлического мышьяка является относительно небольшим - всего несколько сотен тонн в год. Большая часть того, что потребляется, поступает из Швеции. Он используется в металлургии из-за его металлоидных свойств. Около 1% мышьяка применяется в производстве свинцовой дроби, так как он улучшает округлость расплавленной капли. Свойства подшипниковых сплавов на основе свинца улучшаются как по тепловым, так и по механическим характеристикам, когда они содержат около 3% мышьяка. Наличие малого количества этого химического элемента в свинцовых сплавах закаляет их для использования в аккумуляторных батареях и кабельной броне. Небольшие примеси мышьяка повышают коррозионную стойкость и тепловые свойства меди и латуни. В чистом виде химический элементарный As используется для нанесения бронзового покрытия и в пиротехнике. Высокоочищенный мышьяк находит применение в полупроводниковой технике, где он используется с кремнием и германием, а также в форме арсенида галлия (GaAs) в диодах, лазерах и транзисторах.

Соединения As

Так как валентность мышьяка равна 3 и 5, и он имеет ряд степеней окисления от -3 до +5, элемент может образовывать различные виды соединений. Наиболее важное коммерческое значение имеют его формами которых являются As 4 O 6 и As 2 O 5 . Мышьяковистый оксид, широко известный как белый мышьяк, - это побочный продукт обжига руд меди, свинца и некоторых других металлов, а также арсенопирита и сульфидных руд. Он является исходным материалом для большинства других соединений. Кроме того, он используется в пестицидах, служит обесцвечивающим веществом в производстве стекла и консервантом для кож. Пятиокись мышьяка образуется при воздействии окислителя (например, азотной кислоты) на белый мышьяк. Он является основным ингредиентом инсектицидов, гербицидов и клея для металла.

Арсин (AsH 3), бесцветный ядовитый газ, состоящий из мышьяка и водорода, - это еще одно известное вещество. Вещество, называемое также мышьяковистым водородом, получают путем гидролиза металлических арсенидов и восстановления металлов из соединений мышьяка в растворах кислот. Он нашел применение как легирующая добавка в полупроводниках и боевой отравляющий газ. В сельском хозяйстве большое значение имеют мышьяковая кислота (H 3 AsO 4), арсенат свинца (PbHAsO 4) и арсената кальция [Са 3 (AsO 4) 2 ], которые используются для стерилизации почвы и борьбы с вредителями.

Мышьяк - химический элемент, образующий множество органических соединений. Какодин (СН 3) 2 As−As(СН 3) 2 , например, используется при подготовке широко используемого десиканта (осушающего средства) - какодиловой кислоты. Сложные органические соединения элемента применяются в лечении некоторых заболеваний, например, амебной дизентерии, вызванной микроорганизмами.

Физические свойства

Что такое мышьяк с точки зрения его физических свойств? В наиболее стабильном состоянии он представляет собой хрупкое твердое вещество стального серого цвета с низкой тепловой и электрической проводимостью. Хотя некоторые формы As являются металлоподобными, отнесение его к неметаллам - это более точная характеристика мышьяка. Есть и другие виды мышьяка, но они не очень хорошо изучены, особенно желтая метастабильная форма, состоящая из молекул As 4 , подобно белому фосфору Р 4 . Мышьяк возгоняется при температуре 613 °C, и в виде пара он существует как молекулы As 4 , которые не диссоциируют до температуры около 800 °C. Полная диссоциация на молекулы As 2 происходит при 1700 °С.

Строение атома и способность образовывать связи

Электронная формула мышьяка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 - напоминает азот и фосфор в том, что во внешней оболочке есть пять электронов, но он отличается от них наличием 18 электронов в предпоследней оболочке вместо двух или восьми. Добавление 10 положительных зарядов в ядре во время заполнения пяти 3d-орбиталей часто вызывает общее уменьшение электронного облака и увеличение электроотрицательности элементов. Мышьяк в таблице Менделеева можно сравнить с другими группами, которые наглядно демонстрируют эту закономерность. Например, общепризнанно, что цинк является более электроотрицательным, чем магний, а галлий - чем алюминий. Однако в последующих группах эта разница уменьшается, и многие не согласны с тем, что германий электроотрицательнее кремния, несмотря на обилие химических доказательств. Подобный переход от 8- к 18-элементной оболочке от фосфора к мышьяку может увеличить электроотрицательность, но это остается спорным.

Сходство внешней оболочки As и P говорит о том, они могут образовывать 3 на атом при наличии дополнительной несвязанной электронной пары. Степень окисления должна, следовательно, быть +3 или -3, в зависимости от относительной взаимной электроотрицательности. Строение мышьяка также говорит о возможности использования внешней d-орбитали для расширения октета, что позволяет элементу образовывать 5 связей. Она реализуется только при реакции с фтором. Наличие свободной электронной пары для образования комплексных соединений (через донорство электронов) в атоме As проявляется гораздо меньше, чем у фосфора и азота.

Мышьяк стабилен в сухом воздухе, но во влажном покрывается черным оксидом. Его пары легко сгорают, образуя As 2 O 3 . Что такое мышьяк в свободном состоянии? Он практически не подвержен воздействию воды, щелочей и неокисляющих кислот, но окисляется азотной кислотой до состояния +5. С мышьяком реагируют галогены, сера, а многие металлы образуют арсениды.

Аналитическая химия

Вещество мышьяк качественно можно обнаружить в виде желтого аурипигмента, выпадающего в осадок под действием 25% раствора соляной кислоты. Следы As, как правило, определяются путем его преобразования в арсин, который можно обнаружить с помощью теста Марша. Арсин термически разлагается, образуя черное зеркало из мышьяка внутри узкой трубки. По методу Гутцайта пробник, пропитанный под действием арсина темнеет из-за выделения ртути.

Токсикологическая характеристика мышьяка

Токсичность элемента и его производных широко изменяется в значительных пределах, от чрезвычайно ядовитого арсина и его органических производных до просто As, который относительно инертен. О том, что такое мышьяк, говорит применение его органических соединений в качестве боевых отравляющих веществ (люизит), везиканта и дефолианта («Агент блю» на основе водной смеси 5% какодиловой кислоты 26% ее натриевой соли).

В целом производные данного химического элемента раздражают кожу и вызывают дерматит. Также рекомендуется защита от вдыхания мышьяк-содержащей пыли, но большая часть отравлений происходит при его употреблении внутрь. Предельно допустимая концентрация As в пыли за восьмичасовой рабочий день составляет 0,5 мг/м 3 . Для арсина доза снижается до 0,05 части на миллион. Помимо использования соединений данного химического элемента в качестве гербицидов и пестицидов, применение мышьяка в фармакологии позволило получить сальварсан - первый успешный препарат против сифилиса.

Воздействие на здоровье

Мышьяк является одним из наиболее токсичных элементов. Неорганические соединения данного химического вещества в естественных условиях встречаются в небольших количествах. Люди могут подвергаться воздействию мышьяка через пищу, воду и воздух. Экспозиция может также произойти при контакте кожи с зараженной почвой или водой.

Воздействию вещества также подвержены люди, которые с ним работают, живут в домах, построенных из обработанной им древесины, и на землях сельскохозяйственного назначения, где в прошлом применялись пестициды.

Неорганический мышьяк может вызывать различные последствия для здоровья человека, такие как раздражение желудка и кишечника, снижение производства красных и белых клеток крови, изменение кожи и раздражение легких. Предполагается, что поглощение значительного количества этого вещества может увеличить шансы развития рака, особенно рака кожи, легких, печени и лимфатической системы.

Очень высокие концентрации неорганического мышьяка являются причиной бесплодия и выкидышей у женщин, дерматитов, снижения сопротивляемости организма инфекциям, проблем с сердцем и повреждений мозга. Кроме того, этот химический элемент способен повредить ДНК.

Смертельная доза белого мышьяка равна 100 мг.

Органические соединения элемента ни рака, ни повреждений генетического кода не вызывают, но высокие дозы могут нанести вред здоровью человека, например вызвать нервные расстройства или боли в животе.

Свойства As

Основные химико-физические свойства мышьяка следующие:

  • Атомное число - 33.
  • Атомный вес - 74,9216.
  • Температура плавления серой формы - 814 °C при давлении 36 атмосфер.
  • Плотность серой формы - 5,73 г/см 3 при 14 °C.
  • Плотность желтой формы - 2,03 г/см 3 при 18 °C.
  • Электронная формула мышьяка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 .
  • Состояния окисления - -3, +3, +5.
  • Валентность мышьяка - 3, 5.
As 33

Мышьяк

t o кип. (o С) Степ.окис. +5 +3 -3

74,9215

t o плав.(o С) 817 (под давлением) Плотность 5727(серый) 4900(черный)
4s 2 4p 3 ОЭО 2,11 в зем. коре 0,00017 %

Наш рассказ об элементе не очень распространенном, но достаточно широко известном; об элементе, свойства которого до несовместимости противоречивы. Так же трудно совместить и роли, которые играл и играет этот элемент в жизни человечества. В разное время, в разных обстоятельствах, в разном виде он выступает как яд и как целительное средство, как вредный и опасный отход производства, как компонент полезнейших, незаменимых веществ. Итак, элемент с атомным номером 33.

История в тезисах

Поскольку мышьяк относится к числу элементов, точная дата открытия которых не установлена, ограничимся констатацией лишь нескольких достоверных фактов:

известен мышьяк с глубокой древности;

в трудах Диоскорида (I век н. э.) упоминается о прокаливании вещества, которое сейчас называют сернистым мышьяком;

в III—IV веке в отрывочных записях, приписываемых Зозимосу, есть упоминание о металлическом мышьяке; у греческого писателя Олимпиодоруса (V век н. э.) описано изготовление белого мышьяка обжигом сульфида;

в VIII веке арабский алхимик Гебер получил трехокись мышьяка;

в средние века люди начали сталкиваться с трехокисью мышьяка при переработке мышьяксодержащих руд, и белый дым газообразного Аs2О3 получил название рудного дыма;

получение свободного металлического мышьяка приписывают немецкому алхимику Альберту фон Больштедту и относят примерно к 1250 году, хотя греческие и арабские алхимики бесспорно получали мышьяк (нагреванием его трехокиси с органическими веществами) раньше Больштедта;

в 1733 году доказано, что белый мышьяк — это окись металлического мышьяка;

в 1760 году француз Луи Клод Каде получил первое органическое соединение мышьяка, известное как жидкость Каде или окись «какодила»; формула этого вещества [(CH3)2A]2O;

в 1775 году Карл Вильгельм Шееле получил мышьяковистую кислоту и мышьяковистый водород;

в 1789 году Антуан Лоран Лавуазье признал мышьяк самостоятельным химическим элементом.

Элементарный мышьяк — серебристо-серое или оловянно-белое вещество, в свежем изломе обладающее

металлическим блеском. Но на воздухе он быстро тускнеет. При нагревании выше 600° С мышьяк возгоняется, не плавясь, а под давлением 37 атм плавится при 818° С. Мышьяк — единственный металл, у которого температура кипения при нормальном давлении лежит ниже точки плавления.

Мышьяк — яд

В сознании многих слова «яд» и «мышьяк» идентичны. Так уж сложилось исторически. Известны рассказы о ядах Клеопатры. В Риме славились яды Локусты. Обычным орудием устранения политических и прочих противников яд был также в средневековых итальянских республиках. В Венеции, например, при дворе держали специалистов-отравителей. И главным компонентом почти всех ядов был мышьяк.

В России закон, запрещающий отпускать частным лицам «купоросное и янтарное масло, крепкую водку, мышьяк и цилибуху», был издан еще в царствование Анны Иоанновны — в январе 1733 года. Закон был чрезвычайно строг и гласил: «Кто впредь тем мышьяком и прочими вышеозначенными материалы торговать станут и с тем пойманы или на кого донесено будет, тем и учинено будет жестокое наказание и сосланы имеют в ссылку без всякия пощады, тож учинено будет и тем, которые мимо аптек и ратуш у кого покупать будут. А ежели кто, купя таковые ядовитые материалы, чинить будет повреждение людям, таковые по розыску не токмо истязаны, но и смертию казнены будут, смотря по важности дела неотменно».

На протяжении веков соединения мышьяка привлекали (да и сейчас продолжают привлекать) внимание фармацевтов, токсикологов и судебных экспертов.

Узнавать отравление мышьяком криминалисты научились безошибочно. Если в желудке отравленных находят белые фарфоровидные крупинки, то первым делом возникает подозрение на мышьяковистый ангидрид Аs2О3. Эти крупинки вместе с кусочками угля помещают в стеклянную трубку, запаивают ее и нагревают. Если в трубке есть As2O3, то на холодных частях трубки появляется серо-черное блестящее кольцо металлического мышьяка.

После охлаждения конец трубки отламывают, уголь удаляют, а серо-черное кольцо нагревают. При этом кольцо перегоняется к свободному концу трубки, давая белый налет мышьяковистого ангидрида. Реакции здесь такие:

As2O3 + ЗС == As2 + ЗСО

или

2As2O3 + ЗС = 2AS2 + ЗСО2;

2As2+3O2==2As2O3.

Полученный белый налет помещают под микроскоп: уже при малом увеличении видны характерные блестящие кристаллы в виде октаэдров.

Мышьяк обладает способностью долго сохраняться в одном месте. Поэтому при судебно-химических исследованиях в лабораторию доставляют образцы земли, взятой из шести участков возле места захоронения человека, которого могли отравить, а также части его одежды, украшения, доски гроба.

Симптомы мышьяковистого отравления — металлический вкус во рту, рвота, сильные боли в животе. Позже судороги, паралич, смерть. Наиболее известное и общедоступное противоядие при отравлении мышьяком — молоко, точнее, главный белок молока казеин, образующий с мышьяком нерастворимое соединение, не всасывающееся в кровь.

Мышьяк в форме неорганических препаратов смертелен в дозах 0,05—0,1 г, и тем не менее мышьяк присутствует во всех растительных и животных организмах. (Это доказано французским ученым Орфила еще в 1838 году.) Морские растительные и животные организмы содержат в среднем стотысячные, а пресноводные и наземные — миллионные доли процента мышьяка. Микрочастицы мышьяка усваиваются и клетками человеческого организма, элемент № 33 содержится в крови, тканях и органах; особенно много его в печени — от 2 до 12 мг на 1 кг веса. Ученые предполагают, что микродозы мышьяка повышают устойчивость организма к действию вредных микробов.

Мышьяк — лекарство

Врачи констатируют, что кариес зубов в наше время — самая распространенная болезнь. Трудно найти человека, у которого нет хотя бы одного пломбированного зуба. Болезнь начинается с разрушения известковых солей зубной эмали, и тогда начинают свое гадкое дело болезнетворные микробы. Проникая сквозь ослабевшую броню зуба, они атакуют его более мягкую внутреннюю часть. Образуется «кариозная полость», и если посчастливится оказаться у зубного врача на этой стадии, можно отделаться сравнительно легко: кариозная полость будет очищена и заполнена пломбировочным материалом, а зуб останется живым. Но если вовремя не обратиться к врачу, кариозная полость доходит до пульпы—ткани, содержащей нервы, кровеносные и лимфатические сосуды. Начинается ее воспаление, и тогда врач, во избежание худшего, решает убить нерв. Подается команда: «мышьяк!», и на обнаженную инструментом пульпу кладут крупинку пасты величиной с булавочную головку. Мышьяковистая кислота, входящая в состав этой пасты, быстро диффундирует в пульпу (боль, которая при этом ощущается, не что иное, как «последний крик» умирающей пульпы), и через 24—48 часов все кончено — зуб мертв. Теперь врач может безболезненно удалить пульпу и заполнить пульповую камеру и корневые каналы антисептической пастой, а «дырку» запломбировать.

Не только в стоматологии пользуются мышьяком и его соединениями. Всемирную известность приобрел сальварсан, 606-й препарат Пауля Эрлиха — немецкого врача, открывшего в начале XX века первое эффективное средство борьбы с люэсом. Это действительно был 606-й из испытанных Эрлихом мышьяковистых препаратов. Первоначально этому желтому аморфному порошку приписывали формулу

Лишь в 50-х годах, когда сальварсан уже перестали применять как средство против люэса, малярии, возвратного тифа, советский ученый М. Я. Крафт установил его истинную формулу. Оказалось, что сальварсан имеет полимерное строение

Величина п в зависимости от способа получения может колебаться от 8 до 40.

На смену сальварсану пришли другие мышьяковистые препараты, более эффективные и менее токсичные, в частности его производные: новарсенол, миарсенол и др.

Используют в медицинской практике и некоторые неорганические соединения мышьяка. Мышьяковистый ангидрид As2O3, арсенит калия KAsO2, гидроарсенат натрия Na2HAsO4 . 7Н2О (в минимальных дозах, разумеется) тормозят окислительные процессы в организме, усиливают кроветворение. Те же вещества — как наружное — назначают при некоторых кожных заболеваниях. Именно, мышьяку и его соединениям приписывают целебное действие некоторых минеральных вод.

Думаем, что приведенных примеров достаточно для подтверждения тезиса, заключенного в названии этой главы.

Мышьяк — оружие уничтожения

Вновь приходится возращаться к смертоносным свойствам элемента № 33. Не секрет, что его широко использовали, а возможно и сейчас используют, в производстве химического оружия, не менее преступного, чем ядерное. Об этом свидетельствует опыт первой мировой войны. О том же говорят просочившиеся в печать сведения о применении войсками империалистических государств отравляющих веществ в Абиссинии (Италия), Китае (Япония), Корее и Южном Вьетнаме (США).

Соединения мышьяка входят во все основные группы известных боевых отравляющих веществ (0В). Среди 0В общеядовитого действия — арсин, мышьяковистый водород АsН3 (заметим попутно, что соединения трехвалентного мышьяка более ядовиты, чей соединения, в которых мышьяк пятивалентен). Это самое ядовитое из всех соединений мышьяк достаточно истечение получаса подышать воздухом, в литре которого содержится 0,00005 г AsH3, чтобы через несколько дней отправиться на тот свет. Концентрация AsH3 0,005г/л убивает мгновенно. Считают, что биохимический механиз действия- АsН3 состоит в том, что его молекулы «блокируют» молекулы фермента эритроцитов — каталазы; из-за этого в крови накапливается перекись водорода, разрушаящая кровь. Активированный уголь сорбирует арсин слабо, поэтому против арсина обычный противогаз не защитник.

В годы первой мировой войны были попытки применит арсин, но летучесть и неустойчивость этого веществ, помогли избежать его массового применения. Сейчас к сожалению, технические возможности для длительного заражения местности арсином есть. Он образуется при реакции арсенидов некоторых металлов с водой. Да и сами арсениды опасны для людей и животных, американские войска во Вьетнаме доказали это. . . Арсениды многих металлов тоже следовало бы отнести к числу ОВ общего действия.

Другая большая группа отравляющих веществ — вещества раздражающего действия —почти целиком состоит из соединений мышьяка. Ее типичные представители дифенилхлорарсин (C6H5)2AsCl и дифенилцианарсин (C6H5)2AsCN.

Вещества этой группы избирательно действуют на нервные окончания слизистых оболочек — главным образом оболочек верхних дыхательных путей. Это вызывает рефлекторную реакцию организма освободиться от раздражителя, чихая или кашляя. В отличие от слезоточивых ОВ эти вещества даже при легком отравлении действуют и после того, как пораженный выбрался из отравленной атмосферы. В течение нескольких часов человека сотрясает мучительный кашель, появляется боль в груди и в голове, начинают непроизвольно течь слезы. Плюс к этому рвота, одышка, чувство страха; все это доводит до совершенного изнурения. И вдобавок эти вещества вызывают общее отравление организма»

Среди отравляющих веществ кожно-нарывного действия — люизит, реагирующий с сульфогидрильными SH-группами ферментов и нарушающий ход многих: биохимических процессов. Впитываясь через кожу, люизит вызывает общее отравление организма. Это обстоятельство в свое время дало повод американцам рекламировать люизит под названием «роса смерти».

Но хватит об этом. Человечество живет надеждой, что отравляющие вещества, о которых мы рассказали (и еще многие им подобные), никогда больше не будут использованы.

Мышьяк — стимулятор технического прогресса

Самая перспективная область применения мышьяка несомненно полупроводниковая техника. Особое значение приобрели в ней арсениды галлия GaAs и индия InAs. Арсенид галлия важен также для нового направления электронной техники — оптоэлектроники, возникшей в 1963—1965 годах на стыке физики твердого тела, оптики и электроники. Этот же материал помог создать первые полупроводниковые лазеры.

Почему арсениды оказались перспективными для полупроводниковой техники? Чтобы ответить на этот вопрос, напомним коротко о некоторых основных понятиях физики полупроводников: «валентная зона», «запрещенная зона» и «зона проводимости».

В отличие от свободного электрона, который может обладать любой энергией, электрон, заключенный в атоме, может обладать только некоторыми, вполне определенными значениями энергии. Из возможных значений энергии электронов в атоме складываются энергетические зоны. В силу известного принципа Паули, число электронов в каждой зоне не может быть больше некоего определенного максимума. Если зона пуста, то она, естественно, не может участвовать в создании проводимости. Не участвуют в проводимости и электроны целиком заполненной зоны: раз нет свободных уровней, внешнее электрическое поле не может вызывать перераспределения электронов и тем самым создать электрический ток. Проводимость возможна лишь в частично заполненной зоне. Поэтому тела с частично заполненной зоной относят к металлам, а тела, у которых энергетический спектр электронных состоянии состоит из заполненных и пустых зон, — к диэлектрикам или полупроводникам.

Напомним также, что целиком заполненные зоны в кристаллах называются валентными зонами, частично заполненные и пустые — зонами проводимости, а энергетический интервал (или барьер) между ними — запрещенной зоной,

Основное различие между диэлектриками и полупроводниками состоит именно в ширине запрещенной зоны: если для преодоления ее нужна энергия больше 3 электронвольт, то кристалл относят к диэлектрикам, а если меньше — к полупроводникам.

По сравнению с классическими полупроводниками IV группы — германием и кремнием — арсениды элементов III группы обладают двумя преимуществами. Ширину запрещенной зоны и подвижность носителей заряда в них можно варьировать в более широких пределах. А чем подвижнее носители заряда, тем при больших частотах может работать полупроводниковый прибор. Ширину запрещенной зоны выбирают в зависимости от назначения прибора. Так, для выпрямителей и усилителей, рассчитанных на работу при повышенной температуре, применяют материал с большой шириной запрещенной зоны, а для охлаждаемых приемников инфракрасного излучения — с малой.

Арсенид галлия приобрел особую популярность потому, что у него хорошие электрические характеристики, которые он сохраняет в широком интервале температур — от минусовых до плюс 500° С. Для сравнения укажем, что арсенид индия, не уступающий GaAs по электрическим свойствам, начинает терять их при комнатной температуре, соединения германия — при 70—80°, а кремния — при 150-200° С.

Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа (см. статью «Германий»). При этом в полупроводнике создается так называемый переходный слой, и в зависимости от назначения кристалла его легируют так, чтобы получить слой на различной глубине. В кристаллах, предназначенных для изготовления диодов, его «прячут» поглубже; если же из полупроводниковых кристаллов будут делать солнечные батареи, то глубина переходного слоя — не более одного микрона.

Мышьяк как ценную присадку используют в цветной металлургии. Так, добавка к свинцу 0,2—l%As значительно повышает его твердость. Дробь, например, всегда делают из свинца, легированного мышьяком — иначе не получить строго шарообразной формы дробинок.

Добавка 0,15—0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки.

Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов.

И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса — лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды:

во-первых, для здоровья людей, во-вторых, для металла — значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Таков элемент № 33, заслуженно пользующийся скверной репутацией, и тем не менее во многих случаях очень полезный.

* О двух типах проводимости подробно расскавано в статье «Германий».

Соединения мышьяка (англ. и франц. Arsenic, нем. Arsen) известны очень давно. В III - II тысячелетиях до н. э. уже умели получать сплавы меди с 4 - 5% мышьяка. У ученика Аристотеля, Теофраста (IV - III в. до н. э.) встречающийся в природе красный сульфид мышьяка именуется реальгаром; Плиний называет желтый сернистый мышьяк Аs 2 S 3 аурипигментом (Auripigmentum) - окрашенный в золотистый цвет, а позднее он получил название орпимент (orpiment). Древнегреческое слово арсеникон, а также сандарак относятся главным образом к сернистым соединениям. В I в. Диоскорид описал обжигание аурипигмента и образующийся при этом продукт - белый мышьяк (Аs 2 O 3). В алхимический период развития химии считалось неоспоримым, что арсеник (Arsenik) имеет сернистую природу, а так как сера (Sulphur) почиталась "отцом металлов", то и арсенику приписывали мужские свойства. Неизвестно, когда именно впервые был получен металлический мышьяк. Обычно это открытие приписывается Альберту великому (ХIII в.). Окрашивание меди при добавках мышьяка в белый серебристый цвет алхимики рассматривали как превращение меди в серебро и приписывали такую "трансмутацию" могущественной силе мышьяка. В средние века и в первые столетия нового времени стали известны ядовитые свойства мышьяка. Впрочем, еще Диоскорид (Iв.) рекомендовал больным астмой вдыхание паров продукта, получаемого при нагревании реальгара со смолой. Парацельс уже широко применял белый мышьяк и другие соединения мышьяка для лечения. Химики и горняки ХV - ХVII в. знали о способности мышьяка сублимироваться и образовывать парообразные продукты со специфическим запахом и ядовитыми свойствами.Василий Валентин упоминает о хорошо известном металлургам ХVI в. доменном дыме (Huttenrauch) и его специфическом запахе. Греческое (и латинское) название мышьяка, относившееся к сульфидам мышьяка, происходит от греческого мужской. Имеются и другие объяснения про исхождения этого названия, например от арабского arsa paki, означавшего "глубоко в тело проникающий несчастный яд"; вероятно, арабы заимствовали это название от греков. Русское название мышьяк известно с давних пор. В литературе оно появилось со времен Ломоносова, который считал мышьяк полуметаллом. Наряду с этим названием в ХМVIII в. употреблялось слово арсеник, а мышьяком называли As 2 O 3 . Захаров (1810) предлагал название мышьяковик, но оно не привилось. Слово мышьяк, вероятно, заимствовано русскими ремесленниками у тюркских народов. На азербайджанском, узбекском, фарсидском и других восточных языках мышьяк назывался маргумуш (мар - убить, муш - мышь); русское мышьяк, вероятно, искаженное мышь-яд, или мышь-ядь.

Контрольная работа

    Напишите электронные формулы атомов мышьяка и ванадия. Укажите, на каких подуровнях расположены валентные электроны в атомах этих элементов.

Электронные формулы отображают распределение электронов в атоме по энергетическим уровням, подуровням (атомным орбиталям). Электронная конфигурация обозначается группами символов nl x , где n – главное квантовое число, l – орбитальное квантовое число (вместо него указывают соответствующее буквенное обозначение – s , p , d , f ), x – число электронов в данном подуровне (орбитали). При этом следует учитывать, что электрон занимает тот энергетический подуровень, на котором он обладает наименьшей энергией – меньшая сумма n +1 (правило Клечковского). Последовательность заполнения энергетических уровней и подуровней следующая:

1s→2s→2р→3s→3р→4s→3d→4р→5s→4d→5р→6s→(5d 1) →4f→5d→6р→7s→(6d 1-2)→5f→6d→7р

Так как число электронов в атоме того или иного элемента равно его порядковому номеру в таблице Д.И. Менделеева, то для элементов мышьяка (Аs порядковый № 33) и ванадия(V –порядковый № 23) электронные формулы имеют вид:

V 23 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 3

Аs 33 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 10 4р 3

Валентные электроны ванадия - 4s 2 3d 3 - находятся на 4s и 3d подуровнях;

Валентные электроны мышьяка 4s 2 4р 3 находятся на 4s и 4р подуровнях. Таким обра-зом, эти элементы не являются электронными аналогами и не должны размещаться в одной и той же подгруппе. Но на валентных орбиталях атомов этих элементов находится одинаковое число электронов – 5. Поэтому оба элемента помещают в одну и ту же группу периодической системы Д.И.Менделеева.

    У кого элемента – фосфора или сурьмы- ярче выражены окислительные свойства? Дайте ответ на основе сравнения электронных структур атомов этих элементов.

Фосфор 15-ый элемент в Периодической системе Д.И. Менделеева. Его электронная формула 1s 2 2s 2 2р 6 3s 2 3р 3

Сурьма 51-ый элемент в Периодической системе Д.И. Менделеева. Ее электронная формула 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 10 4р 6 5s 2 4d 10 5р 3

На внешних электронных подуровнях этих элементов по 5 электронов, следовательно они относятся к 5-ой группе периодической системы.

Окислительные свойства связаны с положением элементов в Периодической системе Д.И. Менделеева. В каждой группе Периодической системы элемент с более высоким порядковым номером обладает более ярко выраженными восстановительными свойствами в своей группе, а элемент с меньшим порядковым номером - более сильными окислительными свойствами.

У фосфора окислительные свойства выражены сильнее, чем у сурьмы. так как радиус атома меньше и валентные электроны сильнее притягиваются к ядру.

    Почему у азота, кислорода, фтора, железа, кобальта и никеля максимальная валентность ниже номера группы, в которой расположены указанные элементы, а у их электронных аналогов максимальная валентность соответствует номеру группы?

Свойства элементов, формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов.

Высшую степень окисления элемента определяет номер группы периодической системы Д.И. Менделеева, в которой он находится. Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того количества электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки (ns 2 nр 6).

Так как у элементов второго периода отсутствует d-подуровень, то азот, кислород и фтор не могут достигать валентности равной номеру группы. У них нет возможности распаривать электроны. У фтора максимальная валентность может быть равной единице, у кислорода два, а у азота – три. Возбуждение 2s-электрона может происходить только на уровень с n = 3, что энергетически крайне невыгодно Для образования незаполненных АО необходимо, чтобы этот процесс был энергетически выгодным., но энергия, необходимая для перевода 2s -электрона на 3d - слишком велика. Взаимодействие атомов с образованием связи между ними происходит только при наличии орбиталей с близкими энергиями, т.е. орбиталей с одинаковым главным квантовым числом В отличие от азота, кислорода, фтора атомы фосфора серы, хлора могут образовывать соответственно пять, шесть, семь ковалентных связей.. В этом случае возможно участие 3s-электронов в образовании связей, поскольку d-АО (3d) имеют такое же главное квантовое число.

Для большинства d-элементов высшая валентность может отличаться от номера группы. Валентные возможности d-элемента в конкретном, случае определяются структурой электронной оболочки атома. d-элементы могут иметь минимальную валентность выше номера группы (медь, серебро) и ниже номера группы (железо, кобальт, никель).

    Термохимическое уравнение реакции:

СО(г)+2 H 2 (г)= CH 3 OH (ж)+128 кДж

Вычислите, при какой температуре наступает равновесие в этой системе?

При экзотермических реакциях энтальпия системы уменьшается и ΔH< 0 (Н 2 < H 1). Тепловые эффекты выражаются через ΔH.

В основе термохимических расчетов лежит закон Гесса (1840 г.): тепловой эффект реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода.

В термохимических расчетах применяют чаще следствие из закона Гесса: тепловой эффект реакции (ΔHх.р) равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрических коэффициентов.

Энтропия S, так же энтальпия Н является свойством вещества, пропорциональным его количеству Энтропия является функцией состояния, т.е. ее изменение (ΔS) зависит только от начального (S 1) и конечного (S 2) состояния и не зависит от пути процесса:

ΔSх.р = ΣS 0 прод – ΣS 0 исх.

Так как энтропия растет с повышением температуры, то можно считать,

что мера беспорядка ≈ ТΔS. При Р =const и Т = const общую движущую силу процесса, которую обозначают ΔG, можно найти из соотношения:

ΔG = (Н 2 – H 1) – (TS 2 – TS 1); ΔG = ΔH – TΔS.

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V 1) равна скорости обратной реакции (V 2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются

В состояния равновесия

ΔG = 0 и ΔH = TΔS.

Находим ΔS. для данной системы:

S 0 (СО)=197,55∙10 -3 кДж/моль·К;

S 0 (Н 2)=130,52·10 -3 кДж/моль·К;

S 0 (СН 3 ОН)=126,78·10 -3 кДж/моль·К;

ΔSх.р=126,78·10 -3 -(197,55∙10 -3 +2·130,52·10 -3)=-331,81·10 -3

Из условия равновесия

ΔH = TΔS находим Т = ΔH/ΔS

    Вычислите температурный коэффициент реакции (γ), если константа скорости этой реакции при 120 градусах С равна 5,88∙10 -4 , а при 170 градусах С 6,7∙10 -2

Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле:

,

где v t 1 , v t 2 - скорости реакции соответственно при начальной (t 1) и конечной (t 2) температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры реагирующих веществ на 10º.

Отсюда следует, что

,

Исходя из условия задачи, следует, что:

, откуда γ 5 =113,94;

    В каком направлении произойдёт смещение равновесия в системах при повышении давления:

2NO+O 2 – 2NO 2

4HCI(г )+O 2 – 2H 2 O(г )+2CI 2

H 2 + S (к) – H 2 S

Принцип Ле Шателье (принцип смещения равновесия), устанавливает, что внешнее воздействие, выводящее систему из состояния термодинамического равновесия, вызывает в системе процессы, стремящиеся ослабить эффект воздействия.

При увеличении давления смещение равновесия связано с уменьшением общего объёма системы, а уменьшению давления сопутствуют физ. или хим.процессы, приводящие к увеличению объема.

2NO+O 2 → 2NO 2

2моля + 1моль → 2 моля

Увеличение давления приводит к смещению равновесия в сторону реакции, ведущей к образованию меньшего числа молекул. Следовательно равновесие смещается в сторону образования NО 2 V пр > V обр.

4HCI(г)+O 2 → 2H 2 O(г)+2CI 2

4 моля + 1 моль →4 моля

Увеличение давления приводит к смещению равновесия в сторону реакции, ведущей к образованию меньшего числа молекул. Следовательно V пр > V обр

H 2 +S(к) → H 2 S

в ходе реакции не происходит изменение объема. Следовательно изменение давления никак не влияет на смещение равновесия реакции.

Содержание статьи

МЫШЬЯК – химический элемент V группы периодической таблицы, относится к семейству азота. Относительная атомная масса 74,9216. В природе мышьяк представлен только одним стабильным нуклидом 75 As. Искусственно получены также более десяти его радиоактивных изотопов с периодом полураспада от нескольких минут до нескольких месяцев. Типичные степени окисления в соединениях –3, +3, +5. Название мышьяка в русском языке связывают с употреблением его соединений для истребления мышей и крыс; латинское название Arsenicum происходит от греческого «арсен» – сильный, мощный.

Исторические сведения.

Мышьяк относится к пяти «алхимическим» элементам, открытым в средние века (удивительно, но четыре из них – As, Sb, Bi и P находятся в одной группе периодической таблицы – пятой). В то же время соединения мышьяка были известны с древних времен, их применяли для производства красок и лекарств. Особенно интересно использование мышьяка в металлургии.

Несколько тысячелетий назад каменный век сменился бронзовым. Бронза – это сплав меди с оловом. Как полагают историки, первую бронзу отлили в долине Тигра и Евфрата, где-то между 30 и 25 вв. до н.э. В некоторых регионах выплавлялась бронза с особо ценными свойствами – она лучше отливалась и легче ковалась. Как выяснили современные ученые, это был сплав меди, содержащий от 1 до 7% мышьяка и не более 3% олова. Вероятно, поначалу при его выплавке спутали богатую медную руду малахит с продуктами выветривания некоторых тоже зеленых сульфидных медно-мышьяковых минералов. Оценив замечательные свойства сплава, древние умельцы затем уже специально искали мышьяковые минералы. Для поисков использовали свойство таких минералов давать при нагревании специфический чесночный запах. Однако со временем выплавка мышьяковой бронзы прекратилась. Скорее всего это произошло из-за частых отравлений при обжиге мышьяксодержащих минералов.

Конечно, мышьяк был известен в далеком прошлом лишь в виде его минералов. Так, в Древнем Китаем твердый минерал реальгар (сульфид состава As 4 S 4 , реальгар по-арабски означает «рудниковая пыль») использовали для резьбы по камню, однако при нагревании или на свету он «портился», так как превращался в As 2 S 3 . В 4 в. до н.э. Аристотель описал этот минерал под названием «сандарак». В I в. н.э. римский писатель и ученый Плиний Старший, и римский врач и ботаник Диоскорид описали минерал аурипигмент (сульфид мышьяка As 2 S 3). В переводе с латыни название минерала означает «золотая краска»: он использовался как желтый краситель. В 11 в. алхимики различали три «разновидности» мышьяка: так называемый белый мышьяк (оксид As 2 O 3), желтый мышьяк (сульфид As 2 S 3) и красный мышьяк (сульфид As 4 S 4). Белый мышьяк получался при возгонке примесей мышьяка при обжиге медных руд, содержащих этот элемент. Конденсируясь из газовой фазы, оксид мышьяка оседал в виде белого налета. Белый мышьяк использовали с древних времен для уничтожения вредителей, а также...

В 13 в. Альберт фон Больштедт (Альберт Великий) получил металлоподобное вещество, нагревая желтый мышьяк с мылом; возможно, это был первый образец мышьяка в виде простого вещества, полученный искусственно. Но это вещество нарушало мистическую «связь» семи известных металлов с семью планетами; вероятно, поэтому алхимики считали мышьяк «незаконнорожденным металлом». В то же время они обнаружили его свойство придавать меди белый цвет, что дало повод называть его «средством, отбеливающим Венеру (то есть медь)».

Мышьяк был однозначно идентифицирован как индивидуальное вещество в середине 17 в., когда немецкий аптекарь Иоганн Шрёдер получил его в сравнительно чистом виде восстановлением оксида древесным углем. Позднее французский химик и врач Никола Лемери получил мышьяк, нагревая смесь его оксида с мылом и поташом. В 18 в. мышьяк уже был хорошо известен как необычный «полуметалл». В 1775 шведский химик К.В.Шееле получил мышьяковую кислоту и газообразный мышьяковистый водород, а в 1789 А.Л.Лавуазье, наконец, признал мышьяк самостоятельным химическим элементом. В 19 в. были открыты органические соединения, содержащие мышьяк.

Мышьяк в природе.

В земной коре мышьяка немного – около 5·10 –4 % (то есть 5 г на тонну), примерно столько же, сколько германия, олова, молибдена, вольфрама или брома. Часто мышьяк в минералах встречается совместно с железом, медью, кобальтом, никелем.

Состав минералов, образуемых мышьяком (а их известно около 200), отражает «полуметаллические» свойства этого элемента, который может находиться как в положительной, так и в отрицательной степени окисления и соединяться со многими элементами; в первом случае мышьяк может играть роль металла (например, в сульфидах), во втором – неметалла (например, в арсенидах). Сложный состав ряда минералов мышьяка отражает его способность, с одной стороны, частично заменять в кристаллической решетке атомы серы и сурьмы (ионные радиусы S –2 , Sb –3 и As –3 близки и составляют соответственно 0,182, 0,208 и 0,191 нм), с другой – атомы металлов. В первом случае атомы мышьяка имеют скорее отрицательную степень окисления, во втором – положительную.

Электроотрицательность мышьяка (2,0) мала, но выше, чем у сурьмы (1,9) и у большинства металлов, поэтому степень окисления –3 наблюдается для мышьяка лишь в арсенидах металлов, а также в стибарсене SbAs и сростках этого минерала с кристаллами чистых сурьмы или мышьяка (минерал аллемонтит). Многие соединения мышьяка с металлами, судя по их составу, относятся скорее к интерметаллическим соединениям, а не к арсенидам; некоторые из них отличаются переменным содержанием мышьяка. В арсенидах может присутствовать одновременно несколько металлов, атомы которых при близком радиусе ионов замещают друг друга в кристаллической решетке в произвольных соотношениях; в таких случаях в формуле минерала символы элементов перечисляются через запятую. Все арсениды имеют металлический блеск, это непрозрачные, тяжелые минералы, твердость их невелика.

Примером природных арсенидов (их известно около 25) могут служить минералы лёллингит FeAs 2 (аналог пирита FeS 2), скуттерудит CoAs 2–3 и никельскуттерудит NiAs 2–3 , никелин (красный никелевый колчедан) NiAs, раммельсбергит (белый никелевый колчедан) NiAs 2 , саффлорит (шпейсовый кобальт) CoAs 2 и клиносаффлорит (Co,Fe,Ni)As 2 , лангисит (Co,Ni)As, сперрилит PtAs 2 , маухерит Ni 11 As 8 , орегонит Ni 2 FeAs 2 , альгодонит Cu 6 As. Из-за высокой плотности (более 7 г/см 3) многие из них геологи относят к группе «сверхтяжелых» минералов.

Наиболее распространенный минерал мышьяка – арсенопирит (мышьяковый колчедан) FeAsS можно рассматривать как продукт замещения серы в пирите FeS 2 атомами мышьяка (в обычном пирите тоже всегда есть немного мышьяка). Такие соединения называют сульфосолями. Аналогично образовались минералы кобальтин (кобальтовый блеск) CoAsS, глаукодот (Co,Fe)AsS, герсдорфит (никелевый блеск) NiAsS, энаргит и люцонит одинакового состава, но разного строения Cu 3 AsS 4 , прустит Ag 3 AsS 3 – важная серебряная руда, которую иногда называют «рубиновым серебром» из-за ярко-красного цвета, она часто встречается в верхних слоях серебряных жил, где найдены великолепные большие кристаллы этого минерала. Сульфосоли могут содержать и благородные металлы платиновой группы; это минералы осарсит (Os,Ru)AsS, руарсит RuAsS, ирарсит (Ir,Ru,Rh,Pt)AsS, платарсит (Pt,Rh,Ru)AsS, холлингуортит (Rd,Pt,Pd)AsS. Иногда роль атомов серы в таких двойных арсенидах играют атомы сурьмы, например, в сейняйоките (Fe,Ni)(Sb,As) 2 , арсенопалладините Pd 8 (As,Sb) 3 , арсенполибазите (Ag,Cu) 16 (Ar,Sb) 2 S 11 .

Интересно строение минералов, в которых мышьяк присутствует одновременно с серой, но играет скорее роль металла, группируясь вместе с другими металлами. Таковы минералы арсеносульванит Cu 3 (As,V)S 4 , арсеногаухекорнит Ni 9 BiAsS 8 , фрейбергит (Ag,Cu,Fe) 12 (Sb,As) 4 S 13 , теннантит (Cu,Fe) 12 As 4 S 13 , аргентотеннантит (Ag,Cu) 10 (Zn,Fe) 2 (As,Sb) 4 S 13 , голдфилдит Cu 12 (Te,Sb,As) 4 S 13 , жиродит (Cu,Zn,Ag) 12 (As,Sb) 4 (Se,S) 13 . Можно представить себе, какое сложное строение имеет кристаллическая решетка всех этих минералов.

Однозначно положительную степень окисления мышьяк имеет в природных сульфидах – желтом аурипигменте As 2 S 3 , оранжево-желтом диморфите As 4 S 3 , оранжево-красном реальгаре As 4 S 4 , карминово-красном гетчеллите AsSbS 3 , а также в бесцветном оксиде As 2 O 3 , который встречается в виде минералов арсенолита и клаудетита с разной кристаллической структурой (они образуются в результате выветривания других мышьяковых минералов). Обычно эти минералы встречаются в виде небольших вкраплений. Но в 30-е годы 20 в. в южной части Верхоянского хребта были найдены огромные кристаллы аурипигмента размером до 60 см и массой до 30 кг.

В природных солях мышьяковой кислоты H 3 AsO 4 – арсенатах (их известно около 90) степень окисления мышьяка – +5; примером могут служить ярко-розовый эритрин (кобальтовый цвет) Co 3 (AsO 4) 2 ·8H 2 O, зеленые аннабергит Ni 3 (AsO 4) 2 ·8H 2 O, скородит Fe III AsO 4 ·2H 2 O и симплезит Fe II 3 (AsO 4) 2 ·8H 2 O, буро-красный гаспарит (Ce,La,Nd)ArO 4 , бесцветные гёрнесит Mg 3 (AsO 4) 2 ·8H 2 O, рузвельтит BiAsO 4 и кёттигит Zn 3 (AsO 4) 2 ·8H 2 O, а также множество основных солей, например, оливенит Cu 2 AsO 4 (OH), арсенобисмит Bi 2 (AsO 4)(OH) 3 . А вот природные арсениты – производные мышьяковистой кислоты H 3 AsO 3 очень редки.

В центральной Швеции есть знаменитые лангбановские железо-марганцевые карьеры, в которых нашли и описали более 50 образцов минералов, представляющих собой арсенаты. Некоторые из них нигде больше не встречаются. Они образовались когда-то в результате реакции мышьяковой кислоты H 3 AsO 4 с пирокроитом Mn(OH) 2 при не очень высоких температурах. Обычно же арсенаты – продукты окисления сульфидных руд. Они, как правило, не имеют промышленного применения, но некоторые из них очень красивые и украшают минералогические коллекции.

В названиях многочисленных минералов мышьяка можно встретить топонимы (Лёллинг в Австрии, Фрайберг в Саксонии, Сейняйоки в Финляндии, Скуттеруд в Норвегии, Аллемон во Франции, канадский рудник Лангис и рудник Гетчелл в Неваде, штат Орегон в США и др.), имена геологов, химиков, политических деятелей и т.п. (немецкий химик Карл Раммельсберг, мюнхенский торговец минералами Вильям Маухер, владелец шахты Иоганн фон Герсдорф, французский химик Ф.Клоде, английские химики Джон Пруст и Смитсон Теннант, канадский химик Ф.Л.Сперри, президент США Рузвельт и др.), названия растений (так, название минерала саффлорита произошело от шафрана), начальные буквы названий элементов – мышьяка, осмия, рутения, иридия, палладия, платины, греческие корни («эритрос» – красный, «энаргон» – видимый, «литос» – камень) и т.д. и т.п.

Интересно старинное название минерала никелина (NiAs) – купферникель. Средневековые немецкие горняки называли Никелем злого горного духа, а «купферникелем» (Kupfernickel, от нем. Kupfer – медь) – «чертову медь», «фальшивую медь». Медно-красные кристаллы этой руды внешне очень походили на медную руду; ее применяли в стекловарении для окрашивания стекол в зеленый цвет. А вот медь из нее никому получить не удавалось. Эту руду в 1751 исследовал шведский минералог Аксель Кронштедт и выделил из нее новый металл, назвав его никелем.

Поскольку мышьяк химически достаточно инертен, он встречается и в самородном состоянии – в виде сросшихся иголочек или кубиков. Такой мышьяк обычно содержит от 2 до 16% примесей – чаще всего это Sb, Bi, Ag, Fe, Ni, Co. Его легко растереть в порошок. В России самородный мышьяк геологи находили в Забайкалье, в Амурской области, встречается он и в других странах.

Уникален мышьяк тем, что он встречается повсюду – в минералах, горных породах, почве, воде, растениях и животных, недаром его называют «вездесущным». Распределение мышьяка по разным регионам земного шара во многом определялось в процессах формирования литосферы летучестью его соединений при высокой температуре, а также процессами сорбции и десорбции в почвах и осадочных породах. Мышьяк легко мигрирует, чему способствует достаточно высокая растворимость некоторых его соединений в воде. Во влажном климате мышьяк вымывается из почвы и уносится грунтовыми водами, а затем – реками. Среднее содержание мышьяка в реках – 3 мкг/л, в поверхностных водах – около 10 мкг/л, в воде морей и океанов – всего около 1 мкг/л. Это объясняется сравнительно быстрым осаждением его соединений из воды с накоплением в донных отложениях, например, в железомарганцевых конкрециях.

В почвах содержание мышьяка составляет обычно от 0,1 до 40 мг/кг. Но в области залегания мышьяковых руд, а также в вулканических районах в почве может содержаться очень много мышьяка – до 8 г/кг, как в некоторых районах Швейцарии и Новой Зеландии. В таких местах гибнет растительность, а животные болеют. Это характерно для степей и пустынь, где мышьяк не вымывается из почвы. Обогащены по сравнению со средним содержанием и глинистые породы – в них содержится вчетверо больше мышьяка, чем в среднем. В нашей стране предельно допустимой концентрацией мышьяка в почве считается 2 мг/кг.

Мышьяк может выноситься из почвы не только водой, но и ветром. Но для этого он должен сначала превратиться в летучие мышьякорганические соединения. Такое превращение происходит в результате так называемого биометилирования – присоединения метильной группы с образованием связи C–As; этот ферментативный процесс (он хорошо известен для соединений ртути) происходит при участии кофермента метилкобаламина – метилированного производного витамина В 12 (он есть и в организме человека). Биометилирование мышьяка происходит как в пресной, так и в морской воде и приводит к образованию мышьякорганических соединений – метиларсоновой кислоты CH 3 AsO(OH) 2 , диметиларсиновой (диметилмышьяковой, или какодиловой) кислоты (CH 3) 2 As(O)OH, триметиларсина (CH 3) 3 As и его оксида (CH 3) 3 As = O, которые также встречаются в природе. С помощью 14 С-меченого метилкобаламина и 74 As-меченого гидроарсената натрия Na 2 HAsO 4 было показано, что один из штаммов метанобактерий восстанавливает и метилирует эту соль до летучего диметиларсина. В результате в воздухе сельских районов содержится в среднем 0,001 – 0,01 мкг/м 3 мышьяка, в городах, где нет специфических загрязнений – до 0,03 мкг/м 3 , а вблизи источников загрязнения (заводы по выплавке цветных металлов, электростанции, работающие на угле с высоким содержание мышьяка, и др.) концентрация мышьяка в воздухе может превысить 1 мкг/м 3 . Интенсивность выпадения мышьяка в районах расположения промышленных центров составляет 40 кг/км 2 в год.

Образование летучих соединений мышьяка (триметиларсин, например, кипит всего при 51° С) вызывало в 19 в. многочисленные отравления, поскольку мышьяк содержался в штукатурке и даже в зеленой краске для обоев. В виде краски раньше использовали зелень Шееле Cu 3 (AsO 3) 2 · n H 2 O и парижскую, или швейфуртскую зелень Cu 4 (AsO 2) 6 (CH 3 COO) 2 . В условиях высокой влажности и появления плесени из такой краски образуются летучие мышьякорганические производные. Предполагают, что этот процесс мог быть причиной медленного отравления Наполеона в последние годы его жизни (как известно, мышьяк был найден в волосах Наполеона спустя полтора столетия после его смерти).

Мышьяк в заметных количествах содержится в некоторых минеральных водах. Российские нормативы устанавливают, что в лечебно-столовых минеральных водах мышьяка должно быть не более 700 мкг/л. В Джермуке его может быть в несколько раз больше. Выпитые один-два стакана «мышьяковой» минеральной воды человеку вреда не принесут: чтобы смертельно отравиться, надо выпить сразу литров триста... Но понятно, что такую воду нельзя пить постоянно вместо обычной воды.

Химики выяснили, что мышьяк в природных водах может находиться в разных формах, что существенно с точки зрения его анализа, способов миграции, а также разной токсичности этих соединений; так, соединения трехвалентного мышьяка в 25–60 раз токсичнее, чем пятивалентного. Соединения As(III) в воде присутствуют обычно в форме слабой мышьяковистой кислоты H 3 AsO 3 (рК а = 9,22), а соединения As(V) – в виде значительно более сильной мышьяковой кислоты H 3 AsO 4 (рК а = 2,20) и ее депротонированых анионов H 2 AsO 4 – и HAsO 4 2– .

В живом веществе мышьяка в среднем содержится 6·10 –6 %, то есть 6 мкг/кг. Некоторые морские водоросли способны концентрировать мышьяк в такой степени, что становятся опасными для людей. Более того, эти водоросли могут расти и размножаться в чистых растворах мышьяковистой кислоты. Такие водоросли используются в некоторых азиатских странах в качестве средства против крыс. Даже в чистых водах норвежских фьордов водоросли могут содержать мышьяк в количестве до 0,1 г/кг. У человека мышьяк содержится в мозговой ткани и в мышцах, накапливается он в волосах и ногтях.

Свойства мышьяка.

Хотя с виду мышьяк напоминает металл, он все же скорее является неметаллом: не образует солей, например, с серной кислотой, но сам является кислотообразующим элементом. Поэтому этот элемент часто называют полуметаллом. Мышьяк существует в нескольких аллотропных формах и в этом отношении весьма напоминает фосфор. Самая устойчивая из них – серый мышьяк, весьма хрупкое вещество, которое на свежем изломе имеет металлический блеск (отсюда название «металлический мышьяк»); его плотность 5,78 г/см 3 . При сильном нагревании (до 615° С) он возгоняется без плавления (такое же поведение характерно для иода). Под давлением 3,7 МПа (37 атм) мышьяк плавится при 817° С, что значительно выше температуры возгонки. Электропроводность серого мышьяка в 17 раз меньше, чем у меди, но в 3,6 раза выше, чем у ртути. С повышением температуры его электропроводность, как и у типичных металлов, снижается – примерно в такой же степени, как у меди.

Если пары мышьяка очень быстро охладить до температуры жидкого азота (–196° С), получается прозрачное мягкое вещество желтого цвета, напоминающее желтый фосфор, его плотность (2,03 г/см 3) значительно ниже, чем у серого мышьяка. Пары мышьяка и желтый мышьяк состоят из молекул As 4 , имеющих форму тетраэдра – и здесь аналогия с фосфором. При 800° С начинается заметная диссоциация паров с образованием димеров As 2 , а при 1700° С остаются только молекулы As 2 . При нагревании и под действием ультрафиолета желтый мышьяк быстро переходит в серый с выделением тепла. При конденсации паров мышьяка в инертной атмосфере образуется еще одна аморфная форма этого элемента черного цвета. Если пары мышьяка осаждать на стекле, образуется зеркальная пленка.

Строение внешней электронной оболочки у мышьяка такое же, как у азота и фосфора, но в отличие от них, у него 18 электронов на предпоследней оболочке. Как и фосфор, он может образовать три ковалентные связи (конфигурация 4s 2 4p 3), и на атоме As остается неподеленная пара. Знак заряда на атоме As в соединениях с ковалентными связями зависит от электроотрицательности соседних атомов. Участие неподеленной пары в комплексообразовании для мышьяка значительно затруднено по сравнению с азотом и фосфором.

Если в атоме As задействованы d-орбитали, возможно распаривание 4s-электронов с образованием пяти ковалентных связей. Такая возможность практически осуществляется только в соединении с фтором – в пентафториде AsF 5 (известен и пентахлорил AsCl 5 , но он исключительно нестоек и быстро разлагается даже при –50° С).

В сухом воздухе мышьяк устойчив, но во влажном тускнеет и покрывается черным оксидом. При возгонке пары мышьяка легко сгорают на воздухе голубым пламенем с образованием тяжелых белых паров мышьяковистого ангидрида As 2 O 3 . Этот оксид – один из наиболее распространенных мышьяксодержащих реагентов. Он обладает амфотерными свойствами:

As 2 O 3 + 6HCl ® 2AsCl 3 + 3H 2 O,

2 O 3 + 6NH 4 OH ® 2(NH 4) 3 AsO 3 + 3H 2 O.

При окислении As 2 O 3 образуется кислотный оксид – мышьяковый ангидрид:

As 2 O 3 + 2HNO 3 ® As 2 O 5 + H 2 O + NO 2 + NO.

При его взаимодействии с содой получают гидроарсенат натрия, который находит применение в медицине:

As 2 O 3 + 2Na 2 CO 3 + H 2 O ® 2Na 2 HAsO 4 + 2CO 2 .

Чистый мышьяк достаточно инертен; вода, щелочи и кислоты, не обладающие окислительными свойствами, на него не действуют. Разбавленная азотная кислота окисляет его до ортомышьяковистой кислоты H 3 AsO 3 , а концентрированная – до ортомышьяковой H 3 AsO 4:

3As + 5HNO 3 + 2H 2 O ® 3H 3 AsO 4 + 5NO.

Аналогично реагирует и оксид мышьяка(III):

3As 2 O 3 + 4HNO 3 + 7H 2 O ® 6H 3 AsO 4 + 4NO.

Мышьяковая кислота является кислотой средней силы, чуть слабее фосфорной. В отличие от нее, мышьяковистая кислота очень слабая, по своей силе соответствующая борной кислоте H 3 BO 3 . В ее растворах существует равновесие H 3 AsO 3 HAsO 2 + H 2 O. Мышьяковистая кислота и ее соли (арсениты) – сильные восстановители:

HAsO 2 + I 2 + 2H 2 O ® H 3 AsO 4 + 2HI.

Мышьяк реагирует с галогенами и серой. Хлорид AsCl 3 – бесцветная маслянистая жидкость, дымящая на воздухе; водой гидролизуется: AsCl 3 + 2H 2 O ® HAsO 2 + 3HCl. Известны бромид AsBr 3 и иодид AsI 3 , которые также разлагаются водой. В реакциях мышьяка с серой образуются сульфиды различного состава – вплоть до Ar 2 S 5 . Сульфиды мышьяка растворяются в щелочах, в растворе сульфида аммония и в концентрированной азотной кислоте, например:

As 2 S 3 + 6KOH ® K 3 AsO 3 + K 3 AsS 3 + 3H 2 O,

2 S 3 + 3(NH 4) 2 S ® 2(NH 4) 3 AsS 3 ,

2 S 5 + 3(NH 4) 2 S ® 2(NH 4) 3 AsS 4 ,

As 2 S 5 + 40HNO 3 + 4H 2 O ® 6H 2 AsO 4 + 15H 2 SO 4 + 40NO.

В этих реакциях образуются тиоарсениты и тиоарсенаты – соли соответствующих тиокислот (аналогичных тиосерной кислоте).

В реакции мышьяка с активными металлами образуются солеобразные арсениды, которые гидролизуются водой Особенно быстро реакция идет в кислой среде с образованием арсина: Ca 3 As 2 + 6HCl ® 3CaCl 2 + 2AsH 3 . Арсениды малоактивных металлов – GaAs, InAs и др. имеют алмазоподобную атомную решетку. Арсин – бесцветный очень ядовитый газ без запаха, но примеси придают ему запах чеснока. Арсин медленно разлагается на элементы уже при комнатной температуре и быстро – при нагревании.

Мышьяк образует множество мышьякорганических соединений, например, тетраметилдиарсин (CH 3) 2 As–As(CH 3) 2 . Еще в 1760 директор Сервской фарфоровой фабрики Луи Клод Каде де Гассикур, перегоняя ацетат калия с оксидом мышьяка(III), неожиданно получил содержащую мышьяк дымящуюся жидкость с отвратительным запахом, которую назвали аларсином, или жидкостью Каде. Как выяснили впоследствии, в этой жидкости содержались впервые полученные органические производные мышьяка: так называемая окись какодила, которая образовалась в результате реакции

4CH 3 COOK + As 2 O 3 ® (CH 3) 2 As–O–As(CH 3) 2 + 2K 2 CO 3 + 2CO 2 , и дикакодил (CH 3) 2 As–As(CH 3) 2 . Какодил (от греч. «какос» – дурной) был одним из первых радикалов, открытых в органических соединениях.

В 1854 парижский профессор химии Огюст Каур синтезировал триметиларсин действием метилиодида на арсенид натрия: 3CH 3 I + AsNa 3 ® (CH 3) 3 As + 3NaI.

В последующем для синтезов использовали трихлорид мышьяка, например,

(CH 3) 2 Zn + 2AsCl 3 ® 2(CH 3) 3 As + 3ZnCl 2 .

В 1882 были получены ароматические арсины действием металлического натрия на смесь арилгалогенидов и трихлорида мышьяка: 3C 6 H 5 Cl + AsCl 3 + 6Na ® (C 6 H 5) 3 As + 6NaCl. Наиболее интенсивно химия органических производных мышьяка развивалась в 20-е годы 20 в., когда у некоторых из них были обнаружены противомикробное, а также раздражающее и кожно-нарывное действие. В настоящее время синтезированы десятки тысяч мышьякорганических соединений.

Получение мышьяка.

Мышьяк получают, в основном, как побочный продукт переработки медных, свинцовых, цинковых и кобальтовых руд, а также при добыче золота. Некоторые полиметаллические руды содержат до 12% мышьяка. При нагревании таких руд до 650–700° С в отсутствие воздуха мышьяк возгоняется, а при нагревании на воздухе образуется летучий оксид As 2 O 3 – «белый мышьяк». Его конденсируют и нагревают с углем, при этом происходит восстановление мышьяка. Получение мышьяка – вредное производство. Раньше, когда слово «экология» было известно лишь узким специалистам, «белый мышьяк» выпускали в атмосферу, и он оседал на соседних полях и лесах. В отходящих газах мышьяковых заводов содержится от 20 до 250 мг/м 3 As 2 O 3 , тогда как обычно в воздухе содержится примерно 0,00001мг/м 3 . Среднесуточной допустимой концентрацией мышьяка в воздухе считают всего 0,003 мг/м 3 . Парадоксально, но и сейчас намного сильнее загрязняют окружающую среду мышьяком не заводы по его производству, а предприятия цветной металлургии и электростанции, сжигающие каменный уголь. В донных осадках вблизи медеплавильных заводов содержится огромное количество мышьяка – до 10 г/кг. Мышьяк может попасть в почву и с фосфорными удобрениями.

И еще один парадокс: получают мышьяка больше, чем его требуется; это довольно редкий случай. В Швеции «ненужный» мышьяк вынуждены были даже захоранивать в железобетонных контейнерах в глубоких заброшенных шахтах.

Главный промышленный минерал мышьяка – арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в Грузии, Средней Азии и Казахстане, в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые – в Канаде, мышьяково-оловянные – в Боливии и Англии. Кроме того, известны золото-мышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии, на Урале, в Сибири, Забайкалье и на Чукотке.

Определение мышьяка.

Качественной реакцией на мышьяк является осаждение желтого сульфида As 2 S 3 из солянокислых растворов. Следы определяют реакцией Марша или методом Гутцейта: полоски бумаги, смоченные HgCl 2 , темнеют в присутствии арсина, который восстанавливает сулему до ртути.

В последние десятилетия разработаны различные чувствительные методы анализа, с помощью которых можно количественно определить ничтожные концентрации мышьяка, например, в природных водах. В их числе пламенная атомно-абсорбционная спектрометрия, атомно-эмиссионная спектрометрия, масс-спектрометрия, атомно-флуоресцентная спектрометрия, нейтронный активационный анализ... Если мышьяка в воде очень мало, может потребоваться предварительное концентрирование образцов. Используя такое концентрирование, группа харьковских ученых из Национальной академии наук Украины разработала в 1999 экстракционно-рентгенофлуоресцентный метод определения мышьяка (а также селена) в питьевой воде с чувствительностью до 2,5–5 мкг/л.

Для раздельного определения соединений As(III) и As(V) их предварительно отделяют друг от друга с помощью хорошо известных экстракционных и хроматографических методов, а также используя селективное гидрирование. Экстракцию обычно осуществляют с помощью дитиокарбамата натрия или пирролидиндитиокарбамата аммония. Эти соединения образуют с As(III) нерастворимые в воде комплексы, которые можно извлечь хлороформом. Затем с помощью окисления азотной кислотой мышьяк можно снова перевести в водную фазу. Во второй пробе с помощью восстановителя переводят арсенат в арсенит, а затем производят аналогичную экстракцию. Так определяют «общий мышьяк», а затем вычитанием первого результата из второго определяют As(III) и As(V) порознь. Если в воде есть органические соединения мышьяка, их обычно переводят в метилдииодарсин CH 3 AsI 2 или в диметилиодарсин (CH 3) 2 AsI, которые определяют тем или иным хроматографическим методом. Так, с помощью высокоэффективной жидкостной хроматографии можно определить нанограммовые количества вещества.

Многие мышьяковые соединения можно анализировать так называемым гидридным методом. Он заключается в селективном восстановлении анализируемого вещества в летучий арсин. Так, неорганические арсениты восстанавливаются до AsH 3 при рН 5 – 7, а при рН

Чувствителен и нейтронно-активационный метод. Он заключается в облучении образца нейтронами, при этом ядра 75 As захватывают нейтроны и превращаются в радионуклид 76 As, который обнаруживается по характерной радиоактивности с периодом полураспада 26 часов. Так можно обнаружить до 10 –10 % мышьяка в образце, т.е. 1 мг на 1000 т вещества

Применение мышьяка.

Около 97% добываемого мышьяка используют в виде его соединений. Чистый мышьяк применяют редко. В год во всем мире получают и используют всего несколько сотен тонн металлического мышьяка. В количестве 3% мышьяк улучшает качество подшипниковых сплавов. Добавки мышьяка к свинцу заметно повышают его твердость, что используется при производстве свинцовых аккумуляторов и кабелей. Малые добавки мышьяка повышают коррозионную устойчивость и улучшают термические свойства меди и латуни. Мышьяк высокой степени очистки применяют в производстве полупроводниковых приборов, в которых его сплавляют с кремнием или с германием. Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа.

Мышьяк как ценную присадку используют и в цветной металлургии. Так, добавка к свинцу 0,2...1% As значительно повышает его твердость. Уже давно заметили, что если в расплавленный свинец добавить немного мышьяка, то при отливке дроби получаются шарики правильной сферической формы. Добавка 0,15...0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки. Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов. И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса – лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды: во-первых, для здоровья людей; во-вторых, для металла – значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Более широкое применение имеют различные соединения мышьяка, которые ежегодно производятся десятками тысяч тонн. Оксид As 2 O 3 применяют в стекловарении в качестве осветлителя стекла. Еще древним стеклоделам было известно, что белый мышьяк делает стекло «глухим», т.е. непрозрачным. Однако небольшие добавки этого вещества, напротив, осветляют стекло. Мышьяк и сейчас входит в рецептуры некоторых стекол, например, «венского» стекла для термометров.

Соединения мышьяка применяют в качестве антисептика для предохранения от порчи и консервирования шкур, мехов и чучел, для пропитки древесины, как компонент необрастающих красок для днищ судов. В этом качестве используют соли мышьяковой и мышьяковистой кислот: Na 2 HAsO 4 , PbHAsO 4 , Ca 3 (AsO 3) 2 и др. Биологическая активность производных мышьяка заинтересовала ветеринаров, агрономов, специалистов санэпидслужбы. В итоге появились мышьяксодержащие стимуляторы роста и продуктивности скота, противоглистные средства, лекарства для профилактики болезней молодняка на животноводческих фермах. Соединения мышьяка (As 2 O 3 , Ca 3 As 2 , Na 3 As, парижская зелень) используются для борьбы с насекомыми, грызунами, а также с сорняками. Раньше такое применение было широко распространено, особенно при обработке фруктовых деревьев, табачных и хлопковых плантаций, для избавления домашнего скота от вшей и блох, для стимулирования прироста в птицеводстве и свиноводстве, а также для высушивания хлопчатника перед уборкой. Еще в Древнем Китае оксидом мышьяка обрабатывали рисовые посевы, чтобы уберечь их от крыс и грибковых заболеваний и таким образом поднять урожай. А в Южном Вьетнаме американские войска применяли в качестве дефолианта какодиловую кислоту («Эйджент блю»). Сейчас из-за ядовитости соединений мышьяка их использование в сельском хозяйстве ограничено.

Важные области применения соединений мышьяка – производство полупроводниковых материалов и микросхем, волоконной оптики, выращивание монокристаллов для лазеров, пленочная электроника. Для введения небольших строго дозированных количеств этого элемента в полупроводники применяют газообразный арсин. Арсениды галлия GaAs и индия InAs применяют при изготовлении диодов, транзисторов, лазеров.

Ограниченное применение находит мышьяк и в медицине. Изотопы мышьяка 72 As, 74 As и 76 As с удобными для исследований периодами полураспада (26 ч, 17,8 сут. и 26,3 ч соответственно) применяются для диагностики различных заболеваний.

Илья Леенсон



Похожие статьи